
Autometa
Release 2.0

Ian J. Miller, Evan R. Rees, Izaak Miller, Shaurya Chanana, Siddharth Uppal, Kyle Wolf, Jason C. Kwan

Apr 15, 2022

CONTENTS

1 Guide 3

Python Module Index 85

Index 87

i

ii

Autometa, Release 2.0

Autometa: automated extraction of microbial genomes from individual shotgun metagenomes
An automated binning pipeline for single metagenomes, in particular host-associated and highly complex ones.

If you find Autometa useful to your work, please cite our Autometa paper:
Miller, I. J.; Rees, E. R.; Ross, J.; Miller, I.; Baxa, J.; Lopera, J.; Kerby, R. L.; Rey, F. E.; Kwan, J. C. Autometa:
Automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Research, 2019.
DOI: https://doi.org/10.1093/nar/gkz148

CONTENTS 1

https://academic.oup.com/nar/article/47/10/e57/5369936
https://doi.org/10.1093/nar/gkz148

Autometa, Release 2.0

2 CONTENTS

CHAPTER

ONE

GUIDE

1.1 Getting Started

You will need to specifically configure your compute environment depending on how you would like to run the Autometa
workflow.

1.1.1 Choose a workflow

• Nextflow Workflow

• Bash Workflow

1.2 Nextflow Workflow

1.2.1 Why nextflow?

Nextflow helps Autometa produce reproducible results while allowing the pipeline to scale across different platforms
and hardware.

1.2.2 System Requirements

Currently the nextflow pipeline requires Docker so it must be installed on your system. If you don’t have Docker
installed you can install it from docs.docker.com/get-docker. We plan on removing this dependency in future versions,
so that other dependency managers (e.g. Conda, Singularity, etc) can be used.

Nextflow runs on any Posix compatible system. Detailed system requirements can be found in the nextflow documen-
tation

Nextflow (required) and nf-core tools (optional but highly recommended) installation will be discussed in Installing
Nextflow and nf-core tools with Conda.

3

https://docs.docker.com/get-docker
https://www.nextflow.io/docs/latest/getstarted.html#requirements
https://www.nextflow.io/docs/latest/getstarted.html#requirements

Autometa, Release 2.0

1.2.3 Data Preparation

1. Metagenome Assembly

2. Preparing a Sample Sheet

Metagenome Assembly

You will first need to assemble your shotgun metagenome, to provide to Autometa as input.

The following is a typical workflow for metagenome assembly:

1. Trim adapter sequences from the reads

• We usually use Trimmomatic.

2. Quality check the trimmed reads to ensure the adapters have been removed

• We usually use FastQC.

3. Assemble the trimmed reads

• We usually use MetaSPAdes which is a part of the SPAdes package.

4. Check the quality of your assembly (Optional)

• We usually use metaQuast for this (use --min-contig 1 option to get an accurate N50).

This tool can compute a variety of assembly statistics one of which is N50. This can often be useful
for selecting an appropriate length cutoff value for pre-processing the metagenome.

Preparing a Sample Sheet

An example sample sheet for three possible ways to provide a sample as an input is provided below. The first example
provides a metagenome with paired-end read information, such that contig coverages may be determined using a read-
based alignment sub-workflow. The second example uses pre-calculated coverage information by providing a coverage
table with the input metagenome assembly. The third example retrieves coverage information from the assembly contig
headers (Currently, this is only available with metagenomes assembled using SPAdes)

Note: If you have paired-end read information, you can supply these file paths within the sample sheet and the coverage
table will be computed for you (See example_1 in the example sheet below).

If you have used any other assembler, then you may also provide a coverage table (See example_2 in the example sheet
below). Fortunately, Autometa can construct this table for you with: autometa-coverage. Use --help to get the
complete usage or for a few examples see 2. Coverage calculation.

If you use SPAdes then Autometa can use the k-mer coverage information in the contig names (example_3 in the
example sample sheet below).

sam-
ple

assembly fastq_1 fastq_2 cover-
age_tab

cov_from_assembly

exam-
ple_1

/path/to/example/1/metagenome.fna.gz/path/to/paired-
end/fwd_reads.fastq.gz

/path/to/paired-
end/rev_reads.fastq.gz

0

exam-
ple_2

/path/to/example/2/metagenome.fna.gz /path/to/coverage.tsv0

exam-
ple_3

/path/to/example/3/metagenome.fna.gz spades

4 Chapter 1. Guide

http://www.usadellab.org/cms/?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cab.spbu.ru/software/spades/
http://quast.sourceforge.net/metaquast

Autometa, Release 2.0

Note: To retrieve coverage information from a sample’s contig headers, provide the assembler used for the sample
value in the row under the cov_from_assembly column. Using a 0 will designate to the workflow to try to retrieve
coverage information from the coverage table (if it is provided) or coverage information will be calculated by read
alignments using the provided paired-end reads. If both paired-end reads and a coverage table are provided, the pipeline
will prioritize the coverage table.

If you are providing a coverage table to coverage_tab with your input metagenome, it must be tab-delimited and
contain at least the header columns, contig and coverage.

Supported Assemblers for cov_from_assembly

Assembler Supported (Y/N) cov_from_assembly
[meta]SPAdes Y spades
Unicycler N unicycler
Megahit N megahit

You may copy the below table as a csv and paste it into a file to begin your sample sheet. You will need to update your
input parameters, accordingly.

Example sample_sheet.csv

sample,assembly,fastq_1,fastq_2,coverage_tab,cov_from_assembly
example_1,/path/to/example/1/metagenome.fna.gz,/path/to/paired-end/fwd_reads.fastq.gz,/
→˓path/to/paired-end/rev_reads.fastq.gz,,0
example_2,/path/to/example/2/metagenome.fna.gz,,,/path/to/coverage.tsv,0
example_3,/path/to/example/3/metagenome.fna.gz,,,,spades

Caution: Paths to any of the file inputs must be absolute file paths.

Incorrect Correct Description
$HOME/Autometa/tests/
data/metagenome.fna.gz

/home/user/Autometa/tests/
data/metagenome.fna.gz

Replacing any instance of the $HOME
variable with the real path

tests/data/metagenome.
fna.gz

/home/user/Autometa/tests/
data/metagenome.fna.gz

Using the entire file path of the input

1.2.4 Quick Start

The following is a condensed summary of steps required to get Autometa installed, configured and running. There are
links throughout to the appropriate documentation sections that can provide more detail if required.

1.2. Nextflow Workflow 5

Autometa, Release 2.0

Installation

For full installation instructions, please see the Installation section

If you would like to install Autometa via conda (I’d recommend it, its almost foolproof!), you’ll need to first install
Miniconda on your system. You can do this in a few easy steps:

1. Type in the following and then hit enter. This will download the Miniconda installer to your home directory.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O $HOME/
→˓Miniconda3-latest-Linux-x86_64.sh

Note: $HOME is synonymous with /home/user and in my case is /home/sam

2. Now let’s run the installer. Type in the following and hit enter:

bash $HOME/Miniconda3-latest-Linux-x86_64.sh

3. Follow all of the prompts. Keep pressing enter until it asks you to accept. Then type yes and enter. Say yes to
everything.

Note: If for whatever reason, you accidentally said no to the initialization, do not fear. We can fix this by running the
initialization with the following command:

cd $HOME/miniconda3/bin/
./conda init

4. Finally, for the changes to take effect, you’ll need to run the following line of code which effectively acts as a
“refresh”

source ~/.bashrc

Now that you have conda up and running, its time to install the Autometa conda environment. Run the following code:

conda env create --file=https://raw.githubusercontent.com/KwanLab/Autometa/main/nextflow-
→˓env.yml

Attention: You will only need to run the installation (code above) once. The installation does NOT need to be
performed every time you wish to use Autometa. Once installation is complete, the conda environment (which
holds all the tools that Autometa needs) will live on your server/computer much like any other program you install.

Anytime you would like to run Autometa, you’ll need to activate the conda environment. To activate the environment
you’ll need to run the following command:

conda activate autometa-nf

6 Chapter 1. Guide

Autometa, Release 2.0

Configuring a scheduler

For full details on how to configure your scheduler, please see the Configuring your process executor section.

If you are using a Slurm scheduler, you will need to create a configuration file. If you do not have a scheduler, skip
ahead to Running Autometa

First you will need to know the name of your slurm partition. Run sinfo to find this. In the example below, the partition
name is “agrp”.

Next, generate a new file called slurm_nextflow.config via nano:

nano slurm_nextflow.config

Then copy the following code block into that new file (“agrp” is the slurm partition to use in our case):

profiles {
slurm {

process.executor = "slurm"
process.queue = "agrp" // <<-- change this to whatever your␣

→˓partition is called
docker.enabled = true
docker.userEmulation = true
singularity.enabled = false
podman.enabled = false
shifter.enabled = false
charliecloud.enabled = false
executor {

queueSize = 8
}

}
}

Keep this file somewhere central to you. For the sake of this example I will be keeping it in a folder called “Useful
scripts” in my home directory because that is a central point for me where I know I can easily find the file and it won’t
be moved e.g. /home/sam/Useful_scripts/slurm_nextflow.config

Save your new file with Ctrl+O and then exit nano with Ctrl+O.

Installation and set up is now complete.

1.2. Nextflow Workflow 7

Autometa, Release 2.0

Running Autometa

For a comprehensive list of features and options and how to use them please see Running the pipeline

Autometa can bin one or several metagenomic datasets in one run. Regardless of the number of metagenomes you want
to process, you will need to provide a sample sheet which specifies the name of your sample, the full path to where that
data is found and how to retrieve the sample’s contig coverage information.

If the metagenome was assembled via SPAdes, Autometa can extract coverage and contig length information from the
sequence headers.

If you used a different assembler you will need to provide either raw reads or a table containing contig/scaffold coverage
information. Full details for data preparation may be found under Preparing a Sample Sheet

First ensure that your Autometa conda environment is activated. You can activate your environment by running:

conda activate autometa-nf

Run the following code to launch Autometa:

nf-core launch KwanLab/Autometa

Note: You may want to note where you have saved your input sample sheet prior to running the launch command. It
is much easier (and less error prone) to copy/paste the sample sheet file path when specifying the input (We’ll get to
this later in Input and Output).

You will now use the arrow keys to move up and down between your options and hit your “Enter” or “Return” key to
make your choice.

KwanLab/Autometa nf-core parameter settings:

1. Choose a version

2. Choose nf-core interface

3. General nextflow parameters

4. Input and Output

5. Binning parameters

6. Additional Autometa options

7. Computational parameters

8. Do you want to run the nextflow command now?

Choose a version

The double, right-handed arrows should already indicate the latest release of Autometa (in our case 2.0.0). The latest
version of the tool will always be at the top of the list with older versions descending below. To select the latest version,
ensure that the double, right-handed arrows are next to 2.0.0, then hit “Enter”.

8 Chapter 1. Guide

Autometa, Release 2.0

Choose nf-core interface

Pick the Command line option.

Note: Unless you’ve done some fancy server networking (i.e. tunneling and port-forwarding), or are using Autometa
locally, Command line is your only option.

1.2. Nextflow Workflow 9

Autometa, Release 2.0

General nextflow parameters

If you are using a scheduler (Slurm in this example), -profile is the only option you’ll need to change. If you are not
using a scheduler, you may skip this step.

Input and Output

Now we need to give Autometa the full paths to our input sample sheet, output results folder and output logs folder
(aka where trace files are stored).

Note: A new folder, named by its respective sample value, will be created within the output results folder for each
metagenome listed in the sample sheet.

10 Chapter 1. Guide

Autometa, Release 2.0

Binning parameters

If you’re not sure what you’re doing I would recommend only changing length_cutoff. The default cutoff is 3000bp,
which means that any contigs/scaffolds smaller than 3000bp will not be considered for binning.

Note: This cutoff will depend on how good your assembly is: e.g. if your N50 is 1200bp, I would choose a cutoff
of 1000. If your N50 is more along the lines of 5000, I would leave the cutoff at the default 3000. I would strongly
recommend against choosing a number below 900 here. In the example below, I have chosen a cutoff of 1000bp as my
assembly was not particularly great (the N50 is 1100bp).

Additional Autometa options

Here you have a choice to make:

• By enabling taxonomy aware mode, Autometa will attempt to use taxonomic data to make your bins more accu-
rate.

However, this is a more computationally expensive step and will make the process take longer.

• By leaving this option as the default False option, Autometa will bin according to coverage and kmer patterns.

1.2. Nextflow Workflow 11

Autometa, Release 2.0

Despite your choice, you will need to provide a path to the necessary databases using the single_db_dir option. In
the example below, I have enabled the taxonomy aware mode and provided the path to where the databases are stored
(in my case this is /home/sam/Databases).

For additional details on required databases, see the Databases section.

Computational parameters

This will depend on the computational resources you have available. You could start with the default values and see
how the binning goes. If you have particularly complex datasets you may want to bump this up a bit. For your average
metagenome, you won’t need more than 150Gb of memory. I’ve opted to use 75 Gb as a starting point for a few biocrust
(somewhat diverse) metagenomes.

Note: These options correspond to the resources provided to each process of Autometa, not the entire workflow itself.

Also, for TB worth of assembled data you may want to try the Bash Workflow using the autometa-large-data-mode.sh
template

12 Chapter 1. Guide

https://github.com/KwanLab/Autometa/blob/main/workflows/autometa-large-data-mode.sh

Autometa, Release 2.0

Do you want to run the nextflow command now?

You will now be presented with a choice. If you are NOT using a scheduler, you can go ahead and type y to launch
the workflow. If you are using a scheduler, type n - we have one more step to go. In the example below, I am using the
slurm scheduler so I have typed n to prevent immediately performing the nextflow run command.

If you recall, we created a file called slurm_nextflow.config that contains the information Autometa will need to
communicate with the Slurm scheduler. We need to include that file using the -c flag (or configuration flag). Therefore
to launch the Autometa workflow, run the following command:

Note: You will need to change the /home/sam/Useful_scripts/slurm_nextflow.config file path to what is
appropriate for your system.

nextflow run KwanLab/Autometa -r 2.0.0 -profile "slurm" -params-file "nf-params.json" -c
→˓"/home/sam/Useful_scripts/slurm_nextflow.config" (continues on next page)

1.2. Nextflow Workflow 13

Autometa, Release 2.0

(continued from previous page)

Once you have hit the “Enter” key to submit the command, nextflow will display the progress of your binning run, such
as the one below:

When the run is complete, output will be stored in your designated output folder, in my case /home/same/Trial/
Autometa_output (See Input and Output).

14 Chapter 1. Guide

Autometa, Release 2.0

1.2.5 Basic

While the Autometa Nextflow pipeline can be run using Nextflow directly, we designed it using nf-core standards and
templating to provide an easier user experience through use of the nf-core “tools” python library. The directions below
demonstrate using a minimal Conda environment to install Nextflow and nf-core tools and then running the Autometa
pipeline.

Installing Nextflow and nf-core tools with Conda

If you have not previously installed/used Conda, you can get it using the Miniconda installer appropriate to your system,
here: https://docs.conda.io/en/latest/miniconda.html

After installing conda, running the following command will create a minimal Conda environment named “autometa-
nf”, and install Nextflow and nf-core tools.

conda env create --file=https://raw.githubusercontent.com/KwanLab/Autometa/main/nextflow-
→˓env.yml

If you receive the message. . .

CondaValueError: prefix already exists:

. . . it means you have already created the environment. If you want to overwrite/update the environment then add the
--force flag to the end of the command.

conda env create --file=https://raw.githubusercontent.com/KwanLab/Autometa/main/nextflow-
→˓env.yml --force

Once Conda has finished creating the environment be sure to activate it:

conda activate autometa-nf

Using nf-core

Download/Launch the Autometa Nextflow pipeline using nf-core tools. The stable version of Autometa will always
be the “main” git branch. To use an in-development git branch switch “main” in the command with the name of the
desired branch. After the pipeline downloads, nf-core will start the pipeline launch process.

nf-core launch KwanLab/Autometa

Caution: nf-core will give a list of revisions to use following the above command. Any of the version 1.* revisions
are NOT supported.

Attention: If you receive an error about schema parameters you may be able to resolve this by first removing the
existing project and pulling the desired KwanLab/Autometa project using nextflow.

If a local project exists (you can check with nextflow list), first drop this project:

nextflow drop KwanLab/Autometa

Now pull the desired revision:

1.2. Nextflow Workflow 15

https://docs.conda.io/en/latest/miniconda.html

Autometa, Release 2.0

nextflow pull KwanLab/Autometa -r 2.0.0
or
nextflow pull KwanLab/Autometa -r main
or
nextflow pull KwanLab/Autometa -r dev
Now run nf-core with selected revision from above
nf-core launch KwanLab/Autometa -r <2.0.0|main|dev>

Now after re-running nf-core launch ... select the revision that you downloaded from above.

You will then be asked to choose “Web based” or “Command line” for selecting/providing options. While it is possible
to use the command line version, it is preferred and easier to use the web-based GUI. Use the arrow keys to select one
or the other and then press return/enter.

Setting parameters with a web-based GUI

The GUI will present all available parameters, though some extra parameters may be hidden (these can be revealed by
selecting “Show hidden params” on the right side of the page).

Required parameters

The first required parameter is the input sample sheet for the Autometa workflow, specified using --input. This is the
path to your input sample sheet. See Preparing a Sample Sheet for additional details.

The other parameter is a nextflow argument, specified with -profile. This configures nextflow and the Autometa
workflow as outlined in the respective “profiles” section in the pipeline’s nextflow.config file.

• standard (default): runs all process jobs locally, (currently this requires Docker, i.e. docker is enabled for all
processes the default profile).

• slurm: submits all process jobs into the slurm queue. See SLURM before using

• docker: enables docker for all processes

Caution: Additional profiles exists in the nextflow.config file, however these have not yet been tested. If you
are able to successfully configure these profiles, please get in touch or submit a pull request and we will add these
configurations to the repository.

• conda: Enables running all processes using conda

• singularity: Enables running all processes using singularity

• podman: Enables running all processes using podman

• shifter: Enables running all processes using shifter

• charliecloud: Enables running all processes using charliecloud

Caution: Notice the number of hyphens used between --input and -profile. --input is an Autometa workflow
parameter where as -profile is a nextflow argument. This difference in hyphens is true for passing in all arguments
to the Autometa workflow and nextflow, respectively.

16 Chapter 1. Guide

https://www.nextflow.io/docs/latest/conda.html
https://www.nextflow.io/docs/latest/singularity.html
https://www.nextflow.io/docs/latest/podman.html
https://www.nextflow.io/docs/latest/shifter.html
https://www.nextflow.io/docs/latest/charliecloud.html

Autometa, Release 2.0

Running the pipeline

After you are finished double-checking your parameter settings, click “Launch” at the top right of web based GUI page,
or “Launch workflow” at the bottom of the page. After returning to the terminal you should be provided the option Do
you want to run this command now? [y/n] enter y to begin the pipeline.

This process will lead to nf-core tools creating a file named nf-params.json. This file contains your specified pa-
rameters that differed from the pipeline’s defaults. This file can also be manually modified and/or shared to allow
reproducible configuration of settings (e.g. among members within a lab sharing the same server).

Additionally all Autometa specific pipeline parameters can be used as command line arguments using the nextflow
run ... command by prepending the parameter name with two hyphens (e.g. --outdir /path/to/output/
workflow/results)

Caution: If you are restarting from a previous run, DO NOT FORGET to also add the -resume flag to the
nextflow run command. Notice only 1 hyphen is used with the -resume nextflow parameter!

Note: You can run the KwanLab/Autometa project without using nf-core if you already have a correctly formatted
parameters file. (like the one generated from nf-core launch ..., i.e. nf-params.json)

nextflow run KwanLab/Autometa -params-file nf-params.json -profile slurm -resume

1.2.6 Advanced

Parallel computing and computer resource allotment

While you might want to provide Autometa all the compute resources available in order to get results faster, that may
or may not actually achieve the fastest run time.

Within the Autometa pipeline, parallelization happens by providing all the assemblies at once to software that internally
handles parallelization.

The Autometa pipeline will try and use all resources available to individual pipeline modules. Each module/process
has been pre-assigned resource allotments via a low/medium/high tag. This means that even if you don’t select for the
pipeline to run in parallel some modules (e.g. DIAMOND BLAST) may still use multiple cores.

• The maximum number of CPUs that any single module can use is defined with the --max_cpus option (default:
4).

• You can also set --max_memory (default: 16GB)

• --max_time (default: 240h). --max_time refers to the maximum time each process is allowed to run, not the
execution time for the the entire pipeline.

1.2. Nextflow Workflow 17

Autometa, Release 2.0

Databases

Autometa uses the following NCBI databases throughout its pipeline:

• Non-redundant nr database

– ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz

• prot.accession2taxid.gz

– ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz

• nodes.dmp, names.dmp and merged.dmp - Found within

– ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

If you are running autometa for the first time you’ll have to download these databases. You may use
autometa-update-databases --update-ncbi. This will download the databases to the default path. You
can check the default paths using autometa-config --print. If you need to change the default download
directory you can use autometa-config --section databases --option ncbi --value <path/to/new/
ncbi_database_directory>. See autometa-update-databases -h and autometa-config -h for full list of
options.

In your nf-params.json file you also need to specify the directory where the different databases are present. Make
sure that the directory path contains the following databases:

• Diamond formatted nr file => nr.dmnd

• Extracted files from tarball taxdump.tar.gz

• prot.accession2taxid.gz

{
"single_db_dir" = "$HOME/Autometa/autometa/databases/ncbi"

}

Note: Find the above section of code in nf-params.json and update this path to the folder with all of the down-
loaded/formatted NCBI databases.

CPUs, Memory, Disk

Note: Like nf-core pipelines, we have set some automatic defaults for Autometa’s processes. These are dynamic and
each process will try a second attempt using more resources if the first fails due to resources. Resources are always
capped by the parameters (show with defaults):

• --max_cpus = 2

• --max_memory = 6.GB

• --max_time = 48.h

The best practice to change the resources is to create a new config file and point to it at runtime by adding the flag -c
path/to/custom/file.config

For example, to give all resource-intensive (i.e. having label process_high) jobs additional memory and cpus,
create a file called process_high_mem.config and insert

18 Chapter 1. Guide

https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
https://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz
ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

Autometa, Release 2.0

process {
withLabel:process_high {

memory = 200.GB
cpus = 32

}
}

Then your command to run the pipeline (assuming you’ve already run nf-core launch KwanLab/Autometa which
created a nf-params.json file) would look something like:

nextflow run KwanLab/Autometa -params-file nf-params.json -c process_high_mem.config

Caution: If you are restarting from a previous run, DO NOT FORGET to also add the -resume flag to the
nextflow run command.

Notice only 1 hyphen is used with the -resume nextflow parameter!

For additional information and examples see Tuning workflow resources

Additional Autometa parameters

Up to date descriptions and default values of Autometa’s nextflow parameters can be viewed using the following com-
mand:

nextflow run KwanLab/Autometa -r main --help

You can also adjust other pipeline parameters that ultimately control how binning is performed.

params.length_cutoff : Smallest contig you want binned (default is 3000bp)

params.kmer_size : kmer size to use

params.norm_method : Which kmer frequency normalization method to use. See Advanced Usage section for details

params.pca_dimensions : Number of dimensions of which to reduce the initial k-mer frequencies matrix (default is
50). See Advanced Usage section for details

params.embedding_method : Choices are sksne, bhsne, umap, densmap, trimap (default is bhsne) See Advanced
Usage section for details

params.embedding_dimensions : Final dimensions of the kmer frequencies matrix (default is 2). See Advanced
Usage section for details

params.kingdom : Bin contigs belonging to this kingdom. Choices are bacteria and archaea (default is
bacteria).

params.clustering_method : Cluster contigs using which clustering method. Choices are “dbscan” and “hdbscan”
(default is “dbscan”). See Advanced Usage section for details

params.binning_starting_rank : Which taxonomic rank to start the binning from. Choices are superkingdom,
phylum, class, order, family, genus, species (default is superkingdom). See Advanced Usage section for details

params.classification_method : Which clustering method to use for unclustered recruitment step. Choices are
decision_tree and random_forest (default is decision_tree). See Advanced Usage section for details

params.completeness : Minimum completeness needed to keep a cluster (default is at least 20% complete, e.g. 20).
See Advanced Usage section for details

1.2. Nextflow Workflow 19

https://nf-co.re/usage/configuration#running-nextflow-on-your-system

Autometa, Release 2.0

params.purity : Minimum purity needed to keep a cluster (default is at least 95% pure, e.g. 95). See Advanced
Usage section for details

params.cov_stddev_limit : Which clusters to keep depending on the coverage std.dev (default is 25%, e.g. 25).
See Advanced Usage section for details

params.gc_stddev_limit : Which clusters to keep depending on the GC% std.dev (default is 5%, e.g. 5). See
Advanced Usage section for details

Customizing Autometa’s Scripts

In case you want to tweak some of the scripts, run on your own scheduling system or modify the pipeline you can clone
the repository and then run nextflow directly from the scripts as below:

Clone the autometa repository into current directory
git clone git@github.com:KwanLab/Autometa.git

Modify some code
e.g. one of the local modules
code $HOME/Autometa/modules/local/align_reads.nf

Generate nf-params.json file using nf-core
nf-core launch $HOME/Autometa

Then run nextflow
nextflow run $HOME/Autometa -params-file nf-params.json -profile slurm

Note: If you only have a few metagenomes to process and you would like to customize Autometa’s behavior, it may
be easier to first try customization of the Bash Workflow

Useful options

-c : In case you have configured nextflow with your executor (see Configuring your process executor) and have made
other modifications on how to run nextflow using your nexflow.config file, you can specify that file using the -c
flag

To see all of the command line options available you can refer to nexflow CLI documentation

Resuming the workflow

One of the most powerful features of nextflow is resuming the workflow from the last completed process.
If your pipeline was interrupted for some reason you can resume it from the last completed process us-
ing the resume flag (-resume). Eg, nextflow run KwanLab/Autometa -params-file nf-params.json -c
my_other_parameters.config -resume

20 Chapter 1. Guide

https://www.nextflow.io/docs/latest/cli.html#command-line-interface-cli

Autometa, Release 2.0

Execution Report

After running nextflow you can see the execution statistics of your autometa run, including the time taken, CPUs used,
RAM used, etc separately for each process. Nextflow will generate summary, timeline and trace reports automatically
for you in the ${params.outdir}/trace directory. You can read more about this in the nextflow docs on execution
reports.

Visualizing the Workflow

You can visualize the entire workflow ie. create the directed acyclic graph (DAG) of processes from the written DOT
file. First install Graphviz (conda install -c anaconda graphviz) then do dot -Tpng < pipeline_info/
autometa-dot > autometa-dag.png to get the in the png format.

Configuring your process executor

For nextflow to run the Autometa pipeline through a job scheduler you will need to update the respective profile
section in nextflow’s config file. Each profilemay be configured with any available scheduler as noted in the nextflow
executors docs. By default nextflow will use your local computer as the ‘executor’. The next section briefly walks
through nextflow executor configuration to run with the slurm job scheduler.

We have prepared a template for nextflow.configwhich you can access from the KwanLab/Autometa GitHub repos-
itory using this nextflow.config template. Go ahead and copy this file to your desired location and open it in your favorite
text editor (eg. Vim, nano, VSCode, etc).

SLURM

This allows you to run the pipeline using the SLURM resource manager. To do this you’ll first needed to identify the
slurm partition to use. You can find the available slurm partitions by running sinfo. Example: On running sinfo on
our cluster we get the following:

The slurm partition available on our cluster is queue. You’ll need to update this in nextflow.config.

profiles {
// Find this section of code in nextflow.config
slurm {

process.executor = "slurm"
// NOTE: You can determine your slurm partition (e.g. process.queue) with the␣

→˓`sinfo` command
// Set SLURM partition with queue directive.
process.queue = "queue" // <<-- change this to whatever your partition is called
// queue is the slurm partition to use in our case
docker.enabled = true
docker.userEmulation = true
singularity.enabled = false
podman.enabled = false
shifter.enabled = false

(continues on next page)

1.2. Nextflow Workflow 21

https://www.nextflow.io/docs/latest/tracing.html#execution-report
https://www.nextflow.io/docs/latest/tracing.html#execution-report
https://graphviz.org/
https://www.nextflow.io/docs/latest/executor.html
https://www.nextflow.io/docs/latest/executor.html
https://raw.githubusercontent.com/KwanLab/Autometa/main/nextflow.config

Autometa, Release 2.0

(continued from previous page)

charliecloud.enabled = false
executor {

queueSize = 8
}

}
}

More parameters that are available for the slurm executor are listed in the nextflow executor docs for slurm.

Docker image selection

Especially when developing new features it may be necessary to run the pipeline with a custom docker image. Create
a new image by navigating to the top Autometa directory and running make image. This will create a new Autometa
Docker image, tagged with the name of the current Git branch.

To use this tagged version (or any other Autometa image tag) add the argument --autometa_image tag_name to the
nextflow run command

1.3 Bash Workflow

1.3.1 Getting Started

1. Compute Environment Setup

2. Download Workflow Template

3. Configure Required Inputs

Compute Environment Setup

If you have not previously installed/used Conda, you can get it using the Miniconda installer appropriate to your system,
here: https://docs.conda.io/en/latest/miniconda.html

After installing conda, running the following command will create a minimal Conda environment named “autometa”.

conda env create --file=https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa-
→˓env.yml

If you receive the message. . .

CondaValueError: prefix already exists:

. . . it means you have already created the environment. If you want to overwrite/update the environment then add the
--force flag to the end of the command.

conda env create --file=https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa-
→˓env.yml --force

Once Conda has finished creating the environment be sure to activate it:

conda activate autometa

22 Chapter 1. Guide

https://www.nextflow.io/docs/latest/executor.html#slurm
https://docs.conda.io/en/latest/miniconda.html

Autometa, Release 2.0

Download Workflow Template

To run Autometa using the bash workflow you will simply need to download and configure the workflow template to
your metagenomes specifications.

• autometa.sh

• autometa-large-data-mode.sh

Here are a few download commands if you do not want to navigate to the workflow on GitHub

via curl

curl -o autometa.sh https://raw.githubusercontent.com/KwanLab/Autometa/main/workflows/
→˓autometa.sh

via wget

wget https://raw.githubusercontent.com/KwanLab/Autometa/main/workflows/autometa.sh

Note: The autometa-large-data-mode workflow is also available and is configured similarly to the autometa
bash workflow.

Configure Required Inputs

The Autometa bash workflow requires the following input file and directory paths. To see how to prepare each input,
see Data preparation

1. Assembly (assembly)

2. Alignments (bam)

3. ORFs (orfs)

4. Diamond blastp results table (blast)

5. NCBI database directory (ncbi)

6. Input sample name (simpleName)

7. Output directory (outdir)

1.3.2 Data preparation

1. Metagenome Assembly (assembly)

2. Alignments Preparation (bam)

3. ORFs (orfs)

4. Diamond blastp Preparation (blast)

5. NCBI Preparation (ncbi)

1.3. Bash Workflow 23

https://github.com/KwanLab/Autometa/blob/main/workflows/autometa.sh
https://github.com/KwanLab/Autometa/blob/main/workflows/autometa-large-data-mode.sh

Autometa, Release 2.0

Metagenome Assembly

You will first need to assemble your shotgun metagenome, to provide to Autometa as input.

The following is a typical workflow for metagenome assembly:

1. Trim adapter sequences from the reads

We usually use Trimmomatic.

2. Quality check the trimmed reads to ensure the adapters have been removed

We usually use FastQC.

3. Assemble the trimmed reads

We usually use MetaSPAdes which is a part of the SPAdes package.

4. Check the quality of your assembly (Optional)

We usually use metaQuast for this (use --min-contig 1 option to get an accurate N50). This tool
can compute a variety of assembly statistics one of which is N50. This can often be useful for selecting
an appropriate length cutoff value for pre-processing the metagenome.

Alignments Preparation

Note: The following example requires bwa, kart and samtools

conda install -c bioconda bwa kart samtools

First index metagenome assembly
bwa index \\

-b 550000000000 \\ # block size for the bwtsw algorithm (effective with -a bwtsw)␣
→˓[default=10000000]

metagenome.fna # Path to input metagenome

Now perform alignments (we are using kart, but you can use another alignment tool if␣
→˓you'd like)
kart \\

-i metagenome.fna \\ # Path to input metagenome
-t 20 \\ # Number of cpus to use
-f /path/to/forward_reads.fastq.gz \\ # Path to forward paired-end reads
-f2 /path/to/reverse_reads.fastq.gz \\ # Path to reverse paired-end reads
-o alignments.sam # Path to alignments output

Now sort alignments and convert to bam format
samtools sort \\

-@ 40 \\ # Number of cpus to use
-m 10G \\ # Amount of memory to use
alignments.sam \\ # Input alignments file path
-o alignments.bam # Output alignments file path

24 Chapter 1. Guide

http://www.usadellab.org/cms/?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cab.spbu.ru/software/spades/
http://quast.sourceforge.net/metaquast

Autometa, Release 2.0

ORFs

Note: The following example requires prodigal. e.g. conda install -c bioconda prodigal

prodigal -i metagenome.fna \\
-f "gbk" \\
-d "metagenome.orfs.fna" \\
-o "metagenome.orfs.gbk" \\
-a "metagenome.orfs.faa" \\ # This generated file is required as input to the bash␣

→˓workflow
-s "metagenome.all_orfs.txt"

Diamond blastp Preparation

Note: The following example requires diamond. e.g. conda install -c bioconda diamond

diamond blastp \\
--query "metagenome.orfs.faa" \\ # See prodigal output from above
--db /path/to/nr.dmnd \\ # See NCBI section
--threads <num cpus to use> \\
--out blastp.tsv # This generated file is required as input to the bash workflow

NCBI Preparation

If you are running Autometa for the first time you’ll have to download the NCBI databases.

First configure where you want to download the NCBI databases
autometa-config \\

--section databases --option ncbi \\
--value <path/to/your/ncbi/database/directory>

Now download and format the NCBI databases
autometa-update-databases --update-ncbi

Note: You can check the default config paths using autometa-config --print.

See autometa-update-databases -h and autometa-config -h for full list of options.

The previous command will download the following NCBI databases:

• Non-redundant nr database

– ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz

• prot.accession2taxid.gz

– ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz

• nodes.dmp, names.dmp and merged.dmp - Found within

1.3. Bash Workflow 25

https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
https://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz

Autometa, Release 2.0

– ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

Input Sample Name

A crucial step prior to running the Autometa bash workflow is specifying the metagenome sample name and where to
output Autometa’s results.

Default
simpleName="TemplateAssemblyName"
Replace with your sample name
simpleName="MySample"

Note: The simpleName that is provided will be used as a prefix to all of the resulting autometa output files.

Output directory

Immediately following the simpleName parameter, you will need to specify where to write all results.

Default
outdir="AutometaOutdir"
Replace with your output directory...
outdir="MySampleAutometaResults"

1.3.3 Running the pipeline

After you are finished configuring/double-checking your parameter settings..

You may run the pipeline via bash:

bash autometa.sh

or submit the pipeline into a queue:

For example, with slurm:

sbatch autometa.sh

Caution: Make sure your conda autometa environment is activated or the autometa entrypoints will not be avail-
able.

26 Chapter 1. Guide

ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

Autometa, Release 2.0

1.3.4 Additional parameters

You can also adjust other pipeline parameters that ultimately control how binning is performed. These are located at
the top of the workflow just under the required inputs.

length_cutoff : Smallest contig you want binned (default is 3000bp)

kmer_size : kmer size to use

norm_method : Which kmer frequency normalization method to use. See Advanced Usage section for details

pca_dimensions : Number of dimensions of which to reduce the initial k-mer frequencies matrix (default is 50). See
Advanced Usage section for details

embed_method : Choices are sksne, bhsne, umap, densmap, trimap (default is bhsne) See Advanced Usage section
for details

embed_dimensions : Final dimensions of the kmer frequencies matrix (default is 2). See Advanced Usage section for
details

cluster_method : Cluster contigs using which clustering method. Choices are “dbscan” and “hdbscan” (default is
“dbscan”). See Advanced Usage section for details

binning_starting_rank : Which taxonomic rank to start the binning from. Choices are superkingdom, phylum,
class, order, family, genus, species (default is superkingdom). See Advanced Usage section for details

classification_method : Which clustering method to use for unclustered recruitment step. Choices are
decision_tree and random_forest (default is decision_tree). See Advanced Usage section for details

completeness : Minimum completeness needed to keep a cluster (default is at least 20% complete, e.g. 20). See
Advanced Usage section for details

purity : Minimum purity needed to keep a cluster (default is at least 95% pure, e.g. 95). See Advanced Usage section
for details

cov_stddev_limit : Which clusters to keep depending on the coverage std.dev (default is 25%, e.g. 25). See
Advanced Usage section for details

gc_stddev_limit : Which clusters to keep depending on the GC% std.dev (default is 5%, e.g. 5). See Advanced
Usage section for details

Note: If you are configuring an autometa job using the autometa-large-data-mode.sh template, there will be
an additional parameter called, max_partition_size (default=10,000). This is the maximum size partition the Au-
tometa clustering algorithm will consider. Any taxon partitions larger than this setting will be skipped.

1.4 Step by Step Tutorial

Here is the step by step tutorial of the entire pipeline. This is helpful in case you have your own files or just want to run
a specific step.

Before running anything make sure you have activated the conda environment using conda activate autometa.

See the Autometa Package Installation page for details on setting up your conda environment.

I will be going through this tutorial using the 78Mbp test dataset which can be found here https://drive.google.com/
drive/u/2/folders/1McxKviIzkPyr8ovj8BG7n_IYk-QfHAgG. You only need to download metagenome.fna.gz from
the above link and save it at a directory as per your liking. I’m saving it in $HOME/tutorial/test_data/. For instruc-
tions on how to download the dataset using command-line see the “Using command-line” section on Benchmarking
page.

1.4. Step by Step Tutorial 27

https://drive.google.com/drive/u/2/folders/1McxKviIzkPyr8ovj8BG7n_IYk-QfHAgG
https://drive.google.com/drive/u/2/folders/1McxKviIzkPyr8ovj8BG7n_IYk-QfHAgG

Autometa, Release 2.0

1.4.1 1. Length filter

The first step when running Autometa is the length filtering. This would remove any contigs that are below the length
cutoff. This is useful in removing the noise from the data, as small contigs may have ambiguous kmer frequencies. The
default cutoff if 3,000bp, ie. any contig that is smaller than 3,000bp would be removed.

Note: It is important that you alter the cutoff based on your N50. If your N50 is really small, e.g. 500bp (pretty
common for soil assemblies), then you might want to lower your cutoff to somewhere near N50. The tradeoff with
lowering the length cutoff, however, is a greater number of contigs which may make it more difficult for the dataset to
be binned. As was shown in the Autometa paper, as assembly quality degrades so does the binning performance.

Use the following command to run the length-filter step:

autometa-length-filter \
--assembly $HOME/tutorial/test_data/78mbp_metagenome.fna \
--cutoff 3000 \
--output-fasta $HOME/tutorial/78mbp_metagenome.filtered.fna \
--output-stats $HOME/tutorial/78mbp_metagenome.stats.tsv \
--output-gc-content $HOME/tutorial/78mbp_metagenome.gc_content.tsv

Let us dissect the above command:

Flag Input arguments Require-
ment

--assembly Path to metagenome assembly (nucleotide fasta) file Required
--cutoff Length cutoff for the filtered assembly. Default is 3,000bp Optional
--output-fasta Path to filtered metagenomic assembly that would be used for binning Required
--output-stats Path to assembly statistics table Optional
--output-gc-content Path to assembly contigs’ GC content and length stats table Optional

You can view the complete command-line options using autometa-length-filter -h

The above command generates the following files:

File Description
78mbp_metagenome.filtered.fna Length filtered metagenomic assembly to be used for binning
78mbp_metagenome.stats.tsv Table describing the filtered metagenome assembly statistics
78mbp_metagenome.gc_content.tsv Table of GC content and length of each contig in the filtered assembly

1.4.2 2. Coverage calculation

Coverage calculation for each contig is done to provide another parameter to use while clustering contigs.

28 Chapter 1. Guide

https://academic.oup.com/nar/article/47/10/e57/5369936

Autometa, Release 2.0

from SPAdes

If you have used SPAdes to assemble your metagenome, you can use the following command to generate the coverage
table:

autometa-coverage \
--assembly $HOME/tutorial/78mbp_metagenome.fna \
--out $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--from-spades

from alignments.bed

If you have assembled your metagenome using some other assembler you can use one of the following commands to
generate the coverage table.

If you have already made a bed file
autometa-coverage \

--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--bed 78mbp_metagenome.bed \
--out $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--cpus 40

from alignments.bam

If you have already made an alignment (bam file)
autometa-coverage \

--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--bam 78mbp_metagenome.bam \
--out $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--cpus 40

from alignments.sam

If you have already made an alignment (sam file)
autometa-coverage \

--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--sam 78mbp_metagenome.sam \
--out $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--cpus 40

1.4. Step by Step Tutorial 29

Autometa, Release 2.0

from paired-end reads

You may calculate coverage using forward and reverse reads with the assembled metagenome.

autometa-coverage \
--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--fwd-reads fwd_reads_1.fastq \
--rev-reads rev_reads_1.fastq \
--out $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--cpus 40

In case you have multiple forward and reverse read pairs supply a comma-delimited list.

autometa-coverage \
--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--fwd-reads fwd_reads_1.fastq,fwd_reads_2.fastq \
--rev-reads rev_reads_1.fastq,rev_reads_2.fastq \
--out $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--cpus 40

Note:

1. No spaces should be used when providing the forward and reverse reads.

2. The lists of forward and reverse reads should be in the order corresponding to their respective reads pair.

Let us dissect the above commands:

Flag Function
--assembly Path to length filtered metagenome assembly
--from-spades If the input assembly is generated using SPades then extract k-mer coverages from contig IDs
--bed Path to alignments BED file
--bed Path to alignments BAM file
--sam Path to alignments SAM file
--fwd-reads Path to forward reads
--rev-reads Path to reverse reads
--cpus Number of CPUs to use (default is to use all available CPUs)
--out Path to coverage table of each contig

You can view the complete command-line options using autometa-coverage -h

The above command would generate the following files:

File Description
78mbp_metagenome.coverages.tsv Table with read or k-mer coverage of each contig in the metagenome

30 Chapter 1. Guide

Autometa, Release 2.0

1.4.3 3. Generate Open Reading Frames (ORFs)

ORF calling using prodigal is performed here. The ORFs are needed for single copy marker gene detection and for
taxonomic assignment.

Use the following command to run the ORF calling step:

autometa-orfs \
--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--output-nucls $HOME/tutorial/78mbp_metagenome.orfs.fna \
--output-prots $HOME/tutorial/a78mbp_metagenome.orfs.faa \
--cpus 40

Let us dissect the above command:

Flag Function
--assembly Path to length filtered metagenome assembly
--output-nucls Path to nucleic acid sequence of ORFs
--output-prots Path to amino acid sequence of ORFs
--cpus Number of CPUs to use (default is to use all available CPUs)

You can view the complete command-line options using autometa-orfs -h

The above command would generate the following files:

File Description
78mbp_metagenome.orfs.fna Nucleic acid fasta file of ORFs
78mbp_metagenome.orfs.faa Amino acid fasta file of ORFs

1.4.4 4. Single copy markers

Autometa uses single-copy markers to guide clustering, and does not assume that recoverable genomes will necessarily
be “complete”. You first need to download the single-copy markers.

Create a markers directory to hold the marker genes
mkdir -p $HOME/Autometa/autometa/databases/markers

Change the default download path to the directory created above
autometa-config \

--section databases \
--option markers \
--value $HOME/Autometa/autometa/databases/markers

Download single-copy marker genes
autometa-update-databases --update-markers

hmmpress the marker genes
hmmpress -f $HOME/Autometa/autometa/databases/markers/bacteria.single_copy.hmm
hmmpress -f $HOME/Autometa/autometa/databases/markers/archaea.single_copy.hmm

Use the following command to annotate contigs containing single-copy marker genes:

1.4. Step by Step Tutorial 31

Autometa, Release 2.0

autometa-markers \
--orfs $HOME/tutorial/78mbp_metagenome.orfs.faa \
--kingdom bacteria \
--hmmscan $HOME/tutorial/78mbp_metagenome.hmmscan.tsv \
--out $HOME/tutorial/78mbp_metagenome.markers.tsv \
--parallel \
--cpus 4 \
--seed 42

Let us dissect the above command:

Flag Function Require-
ment

--orfs Path to fasta file containing amino acid sequences of ORFS Required
--kingdom Kingdom to search for markers. Choices bacteria (default) and archaea Optional
--hmmscan Path to hmmscan output table containing the respective kingdom single-copy marker

annotations
Required

--out Path to write filtered annotated markers corresponding to kingdom Required
--parallel Use hmmscan parallel option (default: False) Optional
--cpus Number of CPUs to use (default is to use all available CPUs) Optional
--seed Seed to set random state for hmmscan. (default: 42) Optional

You can view the complete command-line options using autometa-markers -h

The above command would generate the following files:

File Description
78mbp_metagenome.hmmscan.tsvhmmscan output table containing the respective kingdom single-copy marker an-

notations
78mbp_metagenome.markers.tsv Annotated marker table corresponding to the particular kingdom

1.4.5 5. Taxonomy assignment

5.1 BLASTP

Autometa assigns a taxonomic rank to each contig and then takes only the contig belonging to the specified kingdom
(either bacteria or archaea) for binning. We found that in host-associated metagenomes, this step vastly improves the
binning performance of Autometa (and other pipelines) because less eukaryotic or viral contigs will be placed into
bacterial bins.

The first step for contig taxonomy assignment is a local alignment search of the ORFs against a reference database.
This can be accelerated using diamond.

Create a diamond formatted database of the NCBI non-redundant (nr.gz) protein database.

diamond makedb \
--in $HOME/Autometa/autometa/databases/ncbi/nr.gz \
--db $HOME/Autometa/autometa/databases/ncbi/nr \
--threads 40

Breaking down the above command:

32 Chapter 1. Guide

https://github.com/bbuchfink/diamond

Autometa, Release 2.0

Flag Function
–in Path to nr database
–db Path to diamond formated nr database
-p Number of processors to use

Note: diamond makedb will append .dmnd to the provided path of --db.

i.e. --db /path/to/nr will become /path/to/nr.dmnd

Run diamond blastp using the following command:

diamond blastp \
--query $HOME/tutorial/78mbp_metagenome.orfs.faa \
--db $HOME/Autometa/autometa/databases/ncbi/nr.dmnd \
--evalue 1e-5 \
--max-target-seqs 200 \
--threads 40 \
--outfmt 6 \
--out $HOME/tutorial/78mbp_metagenome.blastp.tsv

Breaking down the above command:

Flag Function
–query Path to query sequence. Here, amino acid sequence of ORFs
–db Path to diamond formatted nr database
–evalue Maximum expected value to report an alignment
–max-target-seqs Maximum number of target sequences per query to report alignments for
–threads Number of processors to use
–outfmt Output format of BLASTP results
–out Path to BLASTP results

To see the complete list of acceptable output formats see Diamond GitHub Wiki. A complete list of all command-line
options for Diamond can be found on its GitHub Wiki.

Caution: Autometa only parses output format 6 provided above as: --outfmt 6

The above command would generate the blastP table (78mbp_metagenome.blastp.tsv) in output format 6

5.2 Lowest Common Ancestor (LCA)

The second step in taxon assignment is determining each ORF’s lowest common ancestor (LCA). This step uses the
blastp results generated in the previous step to generate a table having the LCA of each ORF. As a default only the blastp
hits (subject accessions) which are within 10% of the top bitscore are used. These subject accessions are translated
to their respective taxids (prot.accession2taxid.gz) to be looked up in NCBI’s taxonomy database (nodes.dmp).
Each ORFs’ list of taxids are then reduced to its lowest common ancestor via a range minimum query.

Note: For more details on the range minimum query algorithm, see the closed issue (#170) on Github and a walk-
through on topcoder

1.4. Step by Step Tutorial 33

https://github.com/bbuchfink/diamond/wiki/3.-Command-line-options#output-options
https://github.com/bbuchfink/diamond/wiki/3.-Command-line-options
https://github.com/KwanLab/Autometa/issues/170
https://www.topcoder.com/thrive/articles/Range%20Minimum%20Query%20and%20Lowest%20Common%20Ancestor
https://www.topcoder.com/thrive/articles/Range%20Minimum%20Query%20and%20Lowest%20Common%20Ancestor

Autometa, Release 2.0

Use the following command to get the LCA of each ORF:

autometa-taxonomy-lca \
--blast $HOME/tutorial/78mbp_metagenome.blastp.tsv \
--dbdir $HOME/Autometa/autometa/databases/ncbi/ \
--lca-output $HOME/tutorial/78mbp_metagenome.lca.tsv \
--sseqid2taxid-output $HOME/tutorial/78mbp_metagenome.lca.sseqid2taxid.tsv \
--lca-error-taxids $HOME/tutorial/78mbp_metagenome.lca.errorTaxids.tsv

Let us dissect the above command:

Parameter Function Required
(Y/N)

--blast Path to diamond blastp output Y
--dbdir Path to NCBI databases directory Y
--lca-output Path to write lca output Y
--sseqid2taxid-outputPath to write qseqids sseqids to taxids translations table N
--lca-error-taxids Path to write table of blast table qseqids that were assigned root due to

a missing taxid
N

You can view the complete command-line options using autometa-taxonomy-lca -h

The above command would generate a table (78mbp_metagenome.lca.tsv) having the name, rank and taxid of the
LCA for each ORF.

5.3 Majority vote

The next step in taxon assignment is doing a modified majority vote to decide the taxonomy of each contig. This was
developed to help minimize the effect of horizontal gene transfer (HGT). Briefly, the voting system helps assign the
correct taxonomy to the contig from its component ORF classification. Even with highly divergent ORFs this allows
for accurate kingdom level classification, enabling us to remove any eukaryotic contaminants or host DNA.

You can run the majority vote step using the following command:

autometa-taxonomy-majority-vote \
--lca $HOME/tutorial/78mbp_metagenome.lca.tsv \
--output $HOME/tutorial/78mbp_metagenome.votes.tsv \
--dbdir $HOME/Autometa/autometa/databases/ncbi/

Let us dissect the above command:

Flag Function
–lca Path to LCA table
–output Path to write majority vote table
–dbdir Path to ncbi database directory

You can view the complete command-line options using autometa-taxonomy-majority-vote -h

The above command would generate a table (78mbp_metagenome.votes.tsv) having the taxid of each contig iden-
tified as per majority vote.

34 Chapter 1. Guide

Autometa, Release 2.0

5.4 Split kingdoms

In this final step of taxon assignment we use the voted taxid of each contig to split the contigs into different kingdoms
and write them as per the provided canonical rank.

autometa-taxonomy \
--votes $HOME/tutorial/78mbp_metagenome.votes.tsv \
--output $HOME/tutorial/ \
--assembly $HOME/tutorial/78mbp_metagenome.filtered.fna \
--prefix 78mbp_metagenome \
--split-rank-and-write superkingdom \
--ncbi $HOME/Autometa/autometa/databases/ncbi/

Let us dissect the above command:

Flag Function Require-
ment

--votes Path to voted taxids table Required
--output Directory to output fasta files of split canonical ranks and taxonomy.tsv Required
--assembly Path to filtered metagenome assembly Required
--prefix prefix to use for each file written Optional
--split-rank-and-writeSplit contigs by provided canonical-rank column then write to output

directory
Optional

--ncbi Path to ncbi database directory Optional

Other options available for --split-rank-and-write are phylum, class, order, family, genus and species

If --split-rank-and-write is specified then it will split contigs by provided canonical-rank column then write a
file corresponding that rank. Eg. Bacteria.fasta, Archaea.fasta, etc for superkingdom.

You can view the complete command-line options using autometa-taxonomy -h

File Description
78mbp_metagenome.taxonomy.tsv Table with taxonomic classification of each contig
78mbp_metagenome.bacteria.fna Fasta file having the nucleic acid sequence of all bacterial contigs
78mbp_metagenome.unclassified.fnaFasta file having the nucleic acid sequence of all contigs unclassified at king-

dom level

In my case there are no non-bacterial contigs. For other datasets, autometa-taxonomy may produce other fasta files,
for example Eukaryota.fasta and Viruses.fasta.

1.4.6 6. K-mer counting

A k-mer (ref) is just a sequence of k characters in a string (or nucleotides in a DNA sequence). It is known that contigs
that belong to the same genome have similar k-mer composition (ref1 and ref2) . Here, we compute k-mer frequencies
of only the bacterial contigs.

This step does the following:

1. Create a k-mer count matrix of 𝑘4/2 dimensions using the specified k-mer length

2. Normalization of the k-mer count matrix to a normalized k-mer frequency matrix

3. Reduce the dimensions of k-mer frequencies using principal component analysis (PCA).

1.4. Step by Step Tutorial 35

https://bioinfologics.github.io/post/2018/09/17/k-mer-counting-part-i-introduction/
https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2004.00624.x?sid=nlm%3Apubmed
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-8-r85

Autometa, Release 2.0

4. Embed the PCA dimensions into two dimensions to allow the ease of visualization and manual binning of the
contigs (see ViZBin paper).

Use the following command to run the k-mer counting step:

autometa-kmers \
--fasta $HOME/tutorial/78mbp_metagenome.bacteria.fna \
--kmers $HOME/tutorial/78mbp_metagenome.bacteria.kmers.tsv \
--size 5 \
--norm-method am_clr \
--norm-output $HOME/tutorial/78mbp_metagenome.bacteria.kmers.normalized.tsv \
--pca-dimensions 50 \
--embedding-method bhsne \
--embedding-output $HOME/tutorial/78mbp_metagenome.bacteria.kmers.embedded.tsv \
--cpus 40 \
--seed 42

Let us dissect the above command:

Flag Input arguments Re-
quire-
ment

--fasta Path to length filtered metagenome assembly Required
--kmers Path to k-mer frequency table Required
--size k-mer size in bp (default 5bp) Optional
--norm-output Path to normalized k-mer table Required
--norm-method Normalization method to transform kmer counts prior to PCA and embedding (de-

fault am_clr). Choices : ilr, clr and am_clr
Optional

--pca-dimensionsNumber of dimensions to reduce to PCA feature space after normalization and prior
to embedding (default: 50)

Optional

--embedding-outputPath to embedded k-mer table Required
--embedding-methodEmbedding method to reduce the k-mer frequencies. Choices: sksne, bhsne (de-

fault), umap, densmap and trimap.
Optional

--cpus Number of CPUs to use (default is to use all available CPUs) Optional
--seed Set random seed for dimension reduction determinism (default 42). Useful in repli-

cating the results
Optional

You can view the complete command-line options using autometa-kmers -h

The above command generates the following files:

File Description
78mbp_metagenome.kmers.tsv Table with raw k-mer counts of each contig
78mbp_metagenome.kmers.normalized.tsv Table with normalized k-mer frequencies of each contig
78mbp_metagenome.kmers.embedded.tsv Table with embedded k-mer frequencies of each contig

36 Chapter 1. Guide

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-014-0066-1

Autometa, Release 2.0

Advanced Usage

In the command used above k-mer normalization is being done using Autometa’s implementation of the center log-ratio
transform (am_clr). Other available normalization methods are isometric log-ratio transform (ilr, scikit-bio implemen-
tation) and center log-ratio transform (clr, scikit-bio implementation). Normalization method can be altered using the
--norm-method flag.

In the above command k-mer embedding is being done using Barnes-Hut t-distributed Stochastic Neighbor Embed-
ding (BH-tSNE). Other embedding methods that are available are Uniform Manifold Approximation and Projection
(UMAP), densMAP (a density-preserving tool based on UMAP) and TriMap, a method that uses triplet constraints
to form a low-dimensional embedding of a set of points. Two implementations of BH-tSNE are available, bhsne and
sksne corresponding to the tsne and scikit-learn libraries, respectively. Embedding method can be altered using the
--embedding-method flag.

Autometa uses a k-mer size of 5 and then embeds the resulting k-mer frequency table into 50 PCA dimensions which
are then reduced to two dimentions. k-mer size can be altered using the --size flag, number of dimensions to reduce
to PCA feature space after normalization and prior to embedding can be altered using the --pca-dimensions flag and
the number of dimensions of which to reduce k-mer frequencies can be altered using the --embedding-dimensions
flag.

Note: 1. Even though bhsne and sksne are the same embedding method (but different implementations) they appear
to give very different results. We recommend using the former.

2. Providing a 0 to --pca-dimensions will skip the PCA step.

1.4.7 7. Binning

This is the step where contigs are binned into genomes via clustering. Autometa assesses genome bins by examining
their completeness, purity, GC content std.dev. and coverage std.dev. A taxonomy table may also be used to selectively
iterate through contigs based on their profiled taxon.

This step does the following:

1. Optionally iterate through contigs based on taxonomy

2. Bin contigs based on embedded k-mer coordinates and coverage

3. Accept genome bins that pass the following metrics:

1. Above completeness threshold (default=20.0)

2. Above purity threshold (default=95.0)

3. Below GC content standard deviation threshold (default=5.0)

4. Below coverage standard deviation threshold (default=25.0)

4. Unbinned contigs will be re-binned until no more acceptable genome bins are yielded

If you include a taxonomy table Autometa will attempt to further partition the data based on ascending taxonomic
specificity (i.e. in the order superkingdom, phylum, class, order, family, genus, species) when binning unclustered
contigs from a previous attempt. We found that this is mainly useful if you have a highly complex metagenome (lots
of species), or you have several related species at similar coverage level.

Use the following command to perform binning:

1.4. Step by Step Tutorial 37

Autometa, Release 2.0

autometa-binning \
--kmers $HOME/tutorial/78mbp_metagenome.bacteria.kmers.embedded.tsv \
--coverages $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--gc-content $HOME/tutorial/78mbp_metagenome.gc_content.tsv \
--markers $HOME/tutorial/78mbp_metagenome.markers.tsv \
--clustering-method dbscan \
--completeness 20 \
--purity 90 \
--cov-stddev-limit 25 \
--gc-stddev-limit 5 \
--taxonomy $HOME/tutorial/78mbp_metagenome.taxonomy.tsv \
--output-binning $HOME/tutorial/78mbp_metagenome.binning.tsv \
--output-main $HOME/tutorial/78mbp_metagenome.main.tsv \
--starting-rank superkingdom \
--rank-filter superkingdom
--rank-name-filter bacteria

Let us dissect the above command:

Flag Function Require-
ment

--kmers Path to embedded k-mer frequencies table Required
--coverages Path to metagenome coverages table Required
--gc-content Path to metagenome GC contents table Required
--markers Path to Autometa annotated markers table Required
--output-binning Path to write Autometa binning results Required
--output-main Path to write Autometa main table Required
--clustering-methodClustering algorithm to use for recursive binning. Choices dbscan (default)

and hdbscan
Optional

--completeness completeness cutoff to retain cluster (default 20) Optional
--purity purity cutoff to retain cluster (default 95) Optional
--cov-stddev-limit coverage standard deviation limit to retain cluster (default 25) Optional
--gc-stddev-limit GC content standard deviation limit to retain cluster (default 5) Optional
--taxonomy Path to Autometa assigned taxonomies table Required
--starting-rank Canonical rank at which to begin subsetting taxonomy (default: superking-

dom)
Optional

--domain Kingdom to consider. Choices bacteria (default) and archaea Optional

You can view the complete command-line options using autometa-binning -h

The above command generates the following files:

1. 78mbp_metagenome.binning.tsv contains the final binning results along with a few more metrics regarding
each genome bin.

2. 78mbp_metagenome.main.tsv which contains the feature table that was utilized during the genome binning
process as well as the corresponding output predictions.

The following table describes each column for the resulting binning outputs. We’ll start with the columns present in
78mbp_metagenome.binning.tsv then describe the additional columns that are present in 78mbp_metagenome.
main.tsv.

38 Chapter 1. Guide

Autometa, Release 2.0

Column Description
Contig Name of the contig in the input fasta file
Cluster Genome bin assigned by autometa to the contig
Completeness Estimated completeness of the Genome bin, based on single-copy marker genes
Purity Estimated purity of the Genome bin, based on the number of single-copy marker genes that are

duplicated in the cluster
cover-
age_stddev

Coverage standard deviation of the Genome bin

gc_content_stddevGC content standard deviation of the Genome bin

In addition to the above columns 78mbp_metagenome.main.tsv file has the following additional columns:

Column Description
Coverage Estimated coverage of the contig
gc_content Estimated GC content of the contig
length Estimated length of the contig
species Assigned taxonomic species for the contig
genus Assigned taxonomic genus for the contig
family Assigned taxonomic family for the contig
order Assigned taxonomic order for the contig
class Assigned taxonomic class for the contig
phylum Assigned taxonomic phylum for the contig
superkingdom Assigned taxonomic superkingdom for the contig
taxid Assigned NCBI taxonomy ID number for the contig
x_1 The first coordinate after dimension reduction
x_2 The second coordinate after dimension reduction

You can attempt to improve your genome bins with an unclustered recruitment step which uses features from existing
genome bins to recruit unbinned contigs. Alternatively you can use these initial genome bin predictions and continue
to the Examining Results section.

Advanced Usage

Completeness = Number of single copy marker genes present just once / Total number of␣
→˓single copy marker genes

Purity = Number of single copy marker genes present more than once / Total number of␣
→˓single copy marker genes

These are default parameters that autometa uses to accept clusters are 20% complete, 95% pure, below 25% coverage
standard deviation and below 5% GC content standard deviation. These parameters can be altered using the flags,
--completeness, --purity, --cov-stddev-limit and --gc-stddev-limit.

There are two binning algorithms to choose from Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). The default is
DBSCAN.

It is important to note that if recursively binning with taxonomy, only contigs at the specific taxonomic rank are an-
alyzed and once the binning algorithm has moved on to the next rank, these are not considered until they fall under
another taxonomic rank under consideration. I.e. Iterate through phyla. Contig of one phylum is only considered
for that phylum then not for the rest of the phyla. If it is still unbinned at the Class rank, then it will be considered

1.4. Step by Step Tutorial 39

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://hdbscan.readthedocs.io/en/latest/index.html

Autometa, Release 2.0

only during its respective Class’s iteration. The canonical rank from which to start binning can be changed using the
--starting-rank flag. The default is superkingdom.

1.4.8 8. Unclustered recruitment (Optional)

An unclustered recruitment step which uses features from existing genome bins is used to classify the unbinned contigs
to the genome bins that were produced in the previous step. This step is optional and the results should be verified
before proceeding with these results.

Note: The machine learning step has been observed to bin contigs that do not necessarily belong to the predicted
genome. Careful inspection of coverage and taxonomy should be done before proceeding with these results.

Use the following command to run the unclustered recruitment step:

autometa-unclustered-recruitment \
--kmers $HOME/tutorial/78mbp_metagenome.bacteria.kmers.normalized.tsv \
--coverage $HOME/tutorial/78mbp_metagenome.coverages.tsv \
--binning $HOME/tutorial/78mbp_metagenome.binning.tsv \
--markers $HOME/tutorial/78mbp_metagenome.markers.tsv \
--taxonomy $HOME/tutorial/78mbp_metagenome.taxonomy.tsv \
--output-binning $HOME/tutorial/78mbp_metagenome.recruitment.binning.tsv \
--output-features $HOME/tutorial/78mbp_metagenome.recruitment.features.tsv \
--output-main $HOME/tutorial/78mbp_metagenome.recruitment.main.tsv \
--classifier decision_tree \
--seed 42

Let us dissect the above command:

Flag Function Required
(Y/N)

--kmers Path to normalized k-mer frequencies table Y
--coverages Path to metagenome coverages table Y
--binning Path to autometa binning output Y
--markers Path to Autometa annotated markers table Y
--output-binningPath to write Autometa unclustered recruitment table Y
--taxonomy Path to taxonomy table N
--output-featuresPath to write Autometa main table used during/after unclustered recruitment N
--output-main Path to write Autometa main table used during/after unclustered recruitment N
--classifier classifier to use for recruitment of contigs. Choices decision_tree (default)

and random_forest
N

--seed Seed to use for RandomState when initializing classifiers (default: 42) N

You can view the complete command-line options using autometa-unclustered-recruitment -h

The above command would generate 78mbp_metagenome.recruitment.binning.tsv and 78mbp_metagenome.
recruitment.main.tsv.

78mbp_metagenome.recruitment.binning.tsv contains the final predictions of
autometa-unclustered-recruitment. 78mbp_metagenome.recruitment.features.tsv is the feature
table utilized during/after the unclustered recruitment algorithm. This represents unbinned contigs with their respec-
tive annotations and output predictions of their recruitment into a genome bin. The taxonomic features have been
encoded using “one-hot encoding” or a presence/absence matrix where each column is a canonical taxonomic rank

40 Chapter 1. Guide

Autometa, Release 2.0

and its respective value for each row represents its presence or absence. Presence and absence are denoted with 1 and
0, respectively. Hence “one-hot” encoding being an encoding of presence and absence of the respective annotation
type. In our case taxonomic designation.

The 78mbp_metagenome.recruitment.binning.tsv file contains the following columns:

Column Description
contig Name of the contig in the input fasta file
cluster Genome bin assigned by autometa to the contig
recruited_cluster Genome bin assigned by autometa to the contig after unclustered recruitment step

Advanced Usage

The clustering method for the unclustered recruitment step can be performed either using a decision tree classifier
(default) or using a random forst algorithm. The choice of method can be selected using the --classifier flag.

1.5 Databases

1.5.1 Markers

Autometa comes packaged with the necessary markers files. Links to these markers files and their associated cutoff
values are below:

• bacteria single-copy-markers - link

• bacteria single-copy-markers cutoffs - link

• archaea single-copy-markers - link

• archaea single-copy-markers cutoffs - link

1.5.2 NCBI

If you are running Autometa for the first time you will need to download the NCBI databases. You may do this manually
or using a few Autometa helper scripts. If you would like to use Autometa’s scripts for this, you will first need to
download Autometa (See Installation).

First configure where you want to download the NCBI databases
autometa-config \\

--section databases --option ncbi \\
--value <path/to/your/ncbi/database/directory>

Now download and format the NCBI databases
autometa-update-databases --update-ncbi

Note: You can check the default config paths using autometa-config --print.

See autometa-update-databases -h and autometa-config -h for full list of options.

The previous command will download the following NCBI databases:

• Non-redundant nr database

1.5. Databases 41

https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa/databases/markers/bacteria.single_copy.hmm
https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa/databases/markers/bacteria.single_copy.cutoffs
https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa/databases/markers/archaea.single_copy.hmm
https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa/databases/markers/archaea.single_copy.cutoffs

Autometa, Release 2.0

– ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz

• prot.accession2taxid.gz

– ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz

• nodes.dmp, names.dmp and merged.dmp - Found within

– ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz

After these files are downloaded, the taxdump.tar.gz tarball’s files are extracted and the non-redundant protein
database (nr.gz) is formatted as a diamond database (i.e. nr.dmnd). This will significantly speed-up the diamond
blastp searches.

1.6 Examining Results

1.6.1 Automappa

An interactive interface for exploration and refinement of metagenomes Automappa is a tool built to interface with
Autometa output to help you explore your binning results.

For details, see the Automappa page

Note: The performance of Automappa may slow down when trying to visualize highly complex communities.

1.6.2 Visualize bins

To run the following commands you’ll need to install R, Rstudio and ggplot2 package in R.

You can now run the following R scripts (preferably in RStudio) to examine your results.

Load packages
library("ggplot2")

Read the main binning table
filepath="/Users/sidd/Research/simulated/78mbp_metagenome.main.tsv"
data = read.table(filepath, header=TRUE, sep='\t')

Fill empty cells as unclustered
data$cluster <- sub("^$", "Unclustered", data$cluster)

ggplot(data, aes(x=x_1, y=x_2, color=cluster, group=cluster)) +
geom_point(size=(sqrt(data$length))/100, shape=20, alpha=0.5) +
theme_classic() + xlab('BH-tSNE X') + ylab('BH-tSNE Y') +
guides(color = guide_legend(title = 'Genome Bin'))

In the above chart each point represents a contig. They are plotted on two axes using results from dimension-reduction
of k-mer frequencies. Rough differences between K-mer frequencies are utilized to guide Autometa’s density-based
binning algorithm. Points are also scaled in size according to their respective contig’s length and colored by their
assigned genome bin. You can see that there are some bins which are well-separated from others, while other bins are
closer together. The latter cases may be worth investigating manually as multiple Autometa bins close together could
actually be different parts of the same genome.

42 Chapter 1. Guide

https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
https://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz
ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz
https://github.com/WiscEvan/Automappa
https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://ggplot2.tidyverse.org/

Autometa, Release 2.0

In addition to using nucleotide composition, Autometa uses coverage and can also use taxonomy to distinguish contigs
with similar composition. We can also visualize these differences with R.

ggplot(data, aes(x=x_1, y=x_2, color=phylum, group=phylum)) +
geom_point(size=(sqrt(data$length))/100, shape=20, alpha=0.5) +
theme_classic() + xlab('BH-tSNE X') + ylab('BH-tSNE Y') +
guides(color = guide_legend(title = 'Phylum'))

In the above plot, we have now colored the points by taxonomic phylum, and this reveals that several clusters that are
close together in BH-tSNE space are in fact quite divergent from one another (like bottom left). This is probably the
basis for Autometa’s assignment of separate bins in these cases.

In some cases, the contigs in a bin may in fact look divergent. You may want to manually examine cases such as these,
but they could well be real if, for example, some contigs have few protein coding genes, or the organism is highly
divergent from known sequences (see our paper here for some examples).

In this particular dataset, the coverages of all genomes are fairly similar, as revealed in the next plot:

ggplot(data, aes(x=coverage, y=gc_content, color=cluster, group=cluster)) +
geom_point(size=(sqrt(data$length))/100, shape=20, alpha=0.5) +
theme_classic() + xlab('Coverage') + ylab('GC content') +
guides(color = guide_legend(title = 'Genome Bin'))

In the above plot, the points are colored by genome bin again, and you can see that in this case, coverage is not much
of a distinguishing feature. In other datasets, you may see closely related genomes at different coverages, which will
be separable by Autometa.

1.7 Benchmarking

Note: The most recent Autometa benchmarking results covering multiple modules and input parameters are hosted on
our KwanLab/metaBenchmarks Github repository and provide a range of analyses covering multiple stages and param-
eter sets. These benchmarks are available with their own respective modules so that the community may easily assess
how Autometa’s novel (taxon-profiling, clustering, binning, refinement) algorithms perform compared to
current state-of-the-art methods. Tools were selected for benchmarking based on their relevance to environmental,
single-assembly, reference-free binning pipelines.

1.7.1 Benchmarking with the autometa-benchmark module

Autometa includes the autometa-benchmark entrypoint, a script to benchmark Autometa taxon-profiling, clustering
and binning-classification prediction results using clustering and classification evaluation metrics. To select the appro-
priate benchmarking method, supply the --benchmark parameter with the respective choice. The three benchmarking
methods are detailed below.

Note: If you’d like to follow along with the benchmarking commands, you may download the test datasets using:

1.7. Benchmarking 43

https://www.nature.com/articles/srep34362
https://github.com/KwanLab/metaBenchmarks

Autometa, Release 2.0

autometa-download-dataset \
--community-type simulated \
--community-sizes 78Mbp \
--file-names reference_assignments.tsv.gz binning.tsv.gz taxonomy.tsv.gz \
--dir-path $HOME/Autometa/autometa/datasets/simulated

This will download three files:

• reference_assignments: tab-delimited file containing contigs with their reference genome assignments.
cols: [contig, reference_genome, taxid, organism_name, ftp_path, length]

• binning.tsv.gz: tab-delimited file containing contigs with Autometa binning predictions, cols: [contig,
cluster]

• taxonomy.tsv.gz: tab-delimited file containing contigs with Autometa taxon-profiling predictions cols:
[contig, kingdom, phylum, class, order, family, genus, species, taxid]

Taxon-profiling

Example benchmarking with simulated communities

Set community size (see above for selection/download of other community types)
community_size=78Mbp

Inputs
NOTE: predictions and reference were downloaded using autometa-download-dataset
predictions="$HOME/Autometa/autometa/datasets/simulated/${community_size}/taxonomy.tsv.gz
→˓" # required columns -> contig, taxid
reference="$HOME/Autometa/autometa/datasets/simulated/${community_size}/reference_
→˓assignments.tsv.gz"
ncbi=$HOME/Autometa/autometa/databases/ncbi

Outputs
output_wide="${community_size}.taxon_profiling_benchmarks.wide.tsv.gz" # file path
output_long="${community_size}.taxon_profiling_benchmarks.long.tsv.gz" # file path
reports="${community_size}_taxon_profiling_reports" # directory path

autometa-benchmark \
--benchmark classification \
--predictions $predictions \
--reference $reference \
--ncbi $ncbi \
--output-wide $output_wide \
--output-long $output_long \
--output-classification-reports $reports

Note: Using --benchmark=classification requires the path to a directory containing files (nodes.dmp,
names.dmp, merged.dmp) from NCBI’s taxdump tarball. This should be supplied using the --ncbi parameter.

44 Chapter 1. Guide

Autometa, Release 2.0

Clustering

Example benchmarking with simulated communities

Set community size (see above for selection/download of other community types)
community_size=78Mbp

Inputs
NOTE: predictions and reference were downloaded using autometa-download-dataset
predictions="$HOME/Autometa/autometa/datasets/simulated/${community_size}/binning.tsv.gz
→˓" # required columns -> contig, cluster
reference="$HOME/Autometa/autometa/datasets/simulated/${community_size}/reference_
→˓assignments.tsv.gz"

Outputs
output_wide="${community_size}.clustering_benchmarks.wide.tsv.gz"
output_long="${community_size}.clustering_benchmarks.long.tsv.gz"

autometa-benchmark \
--benchmark clustering \
--predictions $predictions \
--reference $reference \
--output-wide $output_wide \
--output-long $output_long

Binning

Example benchmarking with simulated communities

Set community size (see above for selection/download of other community types)
community_size=78Mbp

Inputs
NOTE: predictions and reference were downloaded using autometa-download-dataset
predictions="$HOME/Autometa/autometa/datasets/simulated/${community_size}/binning.tsv.gz
→˓" # required columns -> contig, cluster
reference="$HOME/Autometa/autometa/datasets/simulated/${community_size}/reference_
→˓assignments.tsv.gz"

Outputs
output_wide="${community_size}.binning_benchmarks.wide.tsv.gz"
output_long="${community_size}.binning_benchmarks.long.tsv.gz"

autometa-benchmark \
--benchmark binning-classification \
--predictions $predictions \
--reference $reference \
--output-wide $output_wide \
--output-long $output_long

1.7. Benchmarking 45

Autometa, Release 2.0

1.7.2 Autometa Test Datasets

Descriptions

Simulated Communities

Table 1: Autometa Simulated Communities
Community Num. Genomes Num. Control Sequences
78.125Mbp 21 4,044
156.25Mbp 38 3,573
312.50Mbp 85 7,708
625Mbp 166 17,590
1250Mbp 319 41,507
2500Mbp 656 67,702
5000Mbp 1,288 140,529
10000Mbp 2,638 285,262

You can download all the Simulated communities using this link. Individual communities can be downloaded using
the links in the above table.

For more information on simulated communities, check the README.md located in the simulated_communities
directory.

Synthetic Communities

51 bacterial isolates were assembled into synthetic communities which we’ve titled MIX51.

The initial synthetic community was prepared using a mixture of fifty-one bacterial isolates. The synthetic community’s
DNA was extracted for sequencing, assembly and binning.

You can download the MIX51 community using this link.

Download

Using autometa-download-dataset

Autometa is packaged with a built-in module that allows any user to download any of the available test datasets. To use
retrieve these datasets one simply needs to run the autometa-download-dataset command.

For example, to download the reference assignments for a simulated community as well as the most recent Autometa
binning and taxon-profiling predictions for this community, provide the following parameters:

choices for simulated: 78Mbp,156Mbp,312Mbp,625Mbp,1250Mbp,2500Mbp,5000Mbp,10000Mbp
autometa-download-dataset \

--community-type simulated \
--community-sizes 78Mbp \
--file-names reference_assignments.tsv.gz binning.tsv.gz taxonomy.tsv.gz \
--dir-path simulated

This will download reference_assignments.tsv.gz, binning.tsv.gz, taxonomy.tsv.gz to the simulated/
78Mbp directory.

46 Chapter 1. Guide

https://drive.google.com/drive/folders/1McxKviIzkPyr8ovj8BG7n_IYk-QfHAgG?usp=sharing
https://drive.google.com/drive/folders/1AUyPh2p4HRqCiKCidkredEBYR1mh-zWN?usp=sharing
https://drive.google.com/drive/folders/1mt7tficWepc1Vlh-9I6BUmz6b6GBiO4p?usp=sharing
https://drive.google.com/drive/folders/1GZmxnal1HzpTnh7HRU6lSDhUCOLXmq5x?usp=sharing
https://drive.google.com/drive/folders/17hnBBfmmAmj7on5JzSxR73zGVwhMDzUG?usp=sharing
https://drive.google.com/drive/folders/1re57q-mwLLq_qzdFkdA2eJoh41uMeEvl?usp=sharing
https://drive.google.com/drive/folders/1gFN2jUdY9o2kYDoBzLEIyggkHv58bTG3?usp=sharing
https://drive.google.com/drive/folders/1YaEn6rQvBiXLgyIWkxc-EruiYAorCIes?usp=sharing
https://drive.google.com/drive/folders/1JFjVb-pfQTv4GXqvqRuTOZTfKdT0MwhN?usp=sharing
https://drive.google.com/file/d/1Ti05Qp13FleuMQdnp3C5L-sXnIM25EZE/view?usp=sharing
https://drive.google.com/drive/folders/1x8d0o6HO5N72j7p_D_YxrSurBfpi9zmK?usp=sharing

Autometa, Release 2.0

• reference_assignments: tab-delimited file containing contigs with their reference genome assignments.
cols: [contig, reference_genome, taxid, organism_name, ftp_path, length]

• binning.tsv.gz: tab-delimited file containing contigs with Autometa binning predictions, cols: [contig,
cluster]

• taxonomy.tsv.gz: tab-delimited file containing contigs with Autometa taxon-profiling predictions cols:
[contig, kingdom, phylum, class, order, family, genus, species, taxid]

Using gdrive

You can download the individual assemblies of different datasests with the help of gdown using command line (This is
what autometa-download-dataset is using behind the scenes). If you have installed autometa using conda then
gdown should already be installed. If not, you can install it using conda install -c conda-forge gdown or pip
install gdown.

Example for the 78Mbp simulated community

1. Navigate to the 78Mbp community dataset using the link mentioned above.

2. Get the file ID by navigating to any of the files and right clicking, then selecting the get link option.
This will have a copy link button that you should use. The link for the metagenome assem-
bly (ie. metagenome.fna.gz) should look like this : https://drive.google.com/file/d/
15CB8rmQaHTGy7gWtZedfBJkrwr51bb2y/view?usp=sharing

3. The file ID is within the / forward slashes between file/d/ and /, e.g:

Pasted from copy link button:
https://drive.google.com/file/d/15CB8rmQaHTGy7gWtZedfBJkrwr51bb2y/view?usp=sharing
begin file ID ^ ------------------------------^ end file ID

4. Copy the file ID

5. Now that we have the File ID, you can specify the ID or use the drive.google.com prefix. Both should work.

file_id="15CB8rmQaHTGy7gWtZedfBJkrwr51bb2y"
gdown --id ${file_id} -O metagenome.fna.gz
or
gdown https://drive.google.com/uc?id=${file_id} -O metagenome.fna.gz

Note: Unfortunately, at the moment gdown doesn’t support downloading entire directories from Google drive. There
is an open Pull request on the gdown repository addressing this specific issue which we are keeping a close eye on and
will update this documentation when it is merged.

1.7. Benchmarking 47

https://drive.google.com/drive/u/2/folders/1McxKviIzkPyr8ovj8BG7n_IYk-QfHAgG
https://github.com/wkentaro/gdown/pull/90#issue-569060398

Autometa, Release 2.0

1.7.3 Advanced

Data Handling

Aggregating benchmarking results

When dataset index is unique

import pandas as pd
import glob
df = pd.concat([

pd.read_csv(fp, sep="\t", index_col="dataset")
for fp in glob.glob("*.clustering_benchmarks.long.tsv.gz")

])
df.to_csv("benchmarks.tsv", sep='\t', index=True, header=True)

When dataset index is not unique

import pandas as pd
import os
import glob
dfs = []
for fp in glob.glob("*.clustering_benchmarks.long.tsv.gz"):

df = pd.read_csv(fp, sep="\t", index_col="dataset")
df.index = df.index.map(lambda fpath: os.path.basename(fpath))
dfs.append(df)

df = pd.concat(dfs)
df.to_csv("benchmarks.tsv", sep='\t', index=True, header=True)

Downloading multiple test datasets at once

To download all of the simulated communities reference binning/taxonomy assignments as well as the Autometa v2.0
binning/taxonomy predictions all at once, you can provide the multiple arguments to --community-sizes.

e.g. --community-sizes 78Mbp 156Mbp 312Mbp 625Mbp 1250Mbp 2500Mbp 5000Mbp 10000Mbp

An example of this is shown in the bash script below:

choices: 78Mbp,156Mbp,312Mbp,625Mbp,1250Mbp,2500Mbp,5000Mbp,10000Mbp
community_sizes=(78Mbp 156Mbp 312Mbp 625Mbp 1250Mbp 2500Mbp 5000Mbp 10000Mbp)

autometa-download-dataset \
--community-type simulated \
--community-sizes ${community_sizes[@]} \
--file-names reference_assignments.tsv.gz binning.tsv.gz taxonomy.tsv.gz \
--dir-path simulated

48 Chapter 1. Guide

Autometa, Release 2.0

Generating new simulated communities

Communities were simulated using ART, a sequencing read simulator, with a collection of 3000 bacteria randomly
retrieved. Genomes were retrieved until the provided total length was reached.

e.g. -l 1250 would translate to 1250Mbp as the sum of total lengths for all bacterial genomes retrieved.

Work out coverage level for art_illumina
C = [(LN)/G]/2
C = coverage
L = read length (total of paired reads)
G = genome size in bp
-p : indicate a paired-end read simulation or to generate reads from both ends of␣
→˓amplicons
-ss : HS25 -> HiSeq 2500 (125bp, 150bp)
-f : fold of read coverage simulated or number of reads/read pairs generated for each␣
→˓amplicon
-m : the mean size of DNA/RNA fragments for paired-end simulations
-s : the standard deviation of DNA/RNA fragment size for paired-end simulations.
-l : the length of reads to be simulated
$ coverage = ((250 * reads) / (length * 1000000))
$ art_illumina -p -ss HS25 -l 125 -f $coverage -o simulated_reads -m 275 -s 90 -i asm_
→˓path

1.8 Installation

Currently Autometa package installation is supported by conda and docker. For installation using conda, we suggest
downloading miniconda.

Attention: If you are only trying to run the Autometa workflow, you should start at Getting Started before pro-
ceeding.

1.8.1 Direct installation (Quickest)

1. Install miniconda

2. Create a new environment with autometa installed: conda create -c bioconda -n autometa autometa

3. Activate autometa environment conda activate autometa

1.8.2 Install from source (using make)

Download and install miniconda. Now run the following commands:

Navigate to the directory where you would like to clone Autometa
cd $HOME

Clone the Autometa repository
git clone https://github.com/KwanLab/Autometa.git

(continues on next page)

1.8. Installation 49

https://www.niehs.nih.gov/research/resources/software/biostatistics/art/index.cfm
https://docs.conda.io/en/latest/
https://www.docker.com/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

Autometa, Release 2.0

(continued from previous page)

Navigate into the cloned repository
cd Autometa

create autometa conda environment
make create_environment

activate autometa conda environment
conda activate autometa

install autometa source code in autometa environment
make install

Note: You can see a list of all available make commands by running make without any other arguments.

1.8.3 Install from source (full commands)

Download and install miniconda. Now run the following commands:

Construct the autometa environment from autometa-env.yml
conda env create --file=https://raw.githubusercontent.com/KwanLab/Autometa/main/autometa-
→˓env.yml

Activate environment
conda activate autometa

Install the autometa code base from source
python setup.py install

1.8.4 Building the Docker image

You can build a docker image for your clone of the Autometa repository.

1. Install Docker

2. Run the following commands

Navigate to the directory where you need to clone Autometa
cd $HOME

Clone the Autometa repository
git clone https://github.com/KwanLab/Autometa.git

Navigate into the cloned repository
cd Autometa

This will tag the image as jasonkwan/autometa:<your current branch>
make image

(continues on next page)

50 Chapter 1. Guide

https://docs.conda.io/en/latest/miniconda.html
https://www.docker.com/

Autometa, Release 2.0

(continued from previous page)

(or the full command from within the Autometa repo)
docker build . -t jasonkwan/autometa:`git branch --show-current`

1.8.5 Testing Autometa

You can also check the installation using autometa’s built-in unit tests. This is not at all necessary and is primarily
meant for development and debugging purposes. To run the tests, however, you’ll first need to install the following
packages and download the test dataset.

Activate your autometa conda environment
conda activate autometa

List all make options
make

Install dependencies for test environment
make test_environment

Download test_data.json for unit testing to tests/data/
make unit_test_data_download

You can now run different unit tests using the following commands:

Run all unit tests
make unit_test

Run unit tests marked with entrypoint
make unit_test_entrypoints

Run unit tests marked with WIP
make unit_test_wip

Note: As a shortcut you can also create the test environment and run all the unit tests using make unit_test
command.

For more information about the above commands see the Contributing Guidelines page. Additional unit tests are
provided in the test directory. These are designed to aid in future development of autometa.

1.9 Autometa Python API

1.9.1 Running modules

Many of the Autometa modules may be run standalone.

Simply pass in the -m flag when calling a script to signify to python you are running the script as an Autometa module.

I.e. python -m autometa.common.kmers -h

1.9. Autometa Python API 51

Autometa, Release 2.0

Note: Autometa has many entrypoints available that are utilized by the Nextflow Workflow and Bash Workflow . If
you have installed autometa, all of these entrypoints will be available to you.

If you would like to get a better understanding of each entrypoint, we recommend reading the Step by Step Tutorial
section.

1.9.2 Using Autometa’s Python API

Autometa’s classes and functions are available after installation. To access these, do the same as importing any other
python library.

Examples

Samtools wrapper

To incorporate a call to samtools sort inside of your python code using the Autometa samtools wrapper.

from autometa.common.external import samtools

To see samtools.sort parameters try the commented command below:
samtools.sort?

Run samtools sort command in ipython interpreter
samtools.sort(sam="<path/to/alignment.sam>", out="<path/to/output/alignment.bam>",␣
→˓cpus=4)

Metagenome Description

Here is an example to easily assess your metagenome’s characteristics using Autometa’s Metagenome class

from autometa.common.metagenome import Metagenome

To see input parameters, instance attributes and methods
Metagenome?

Create a metagenome instance
mg = Metagenome(assembly="/path/to/metagenome.fasta")

To see available methods (ignore any elements in the list with a double underscore)
dir(mg)

Get pandas dataframe of metagenome details.
metagenome_df = mg.describe()

metagenome_df.to_csv("path/to/metagenome_description.tsv", sep='\t', index=True,␣
→˓header=True)

52 Chapter 1. Guide

Autometa, Release 2.0

k-mer frequency counting, normalization, embedding

To quickly perform a k-mer frequency counting, normalization and embedding pipeline. . .

from autometa.common import kmers

Count kmers
counts = kmers.count(

assembly="/path/to/metagenome.fasta",
size=5

)

Normalize kmers
norm_df = kmers.normalize(

df=counts,
method="ilr"

)

Embed kmers
embed_df = kmers.embed(

norm_df,
pca_dimensions=50,
embed_dimensions=3,
method="densmap"

)

1.10 Usage

1.10.1 common

external

bedtools.py

usage: bedtools.py

Compute genome coverage from sorted BAM file

optional arguments:
-h, --help show this help message and exit
--ibam filepath Path to sorted alignment.bam
--bed filepath Path to write alignment.bed; tab-delimited

cols=[contig,length]
--output filepath Path to output coverage.tsv
--force-bed force overwrite `bed`
--force-cov force overwrite `--output`

1.10. Usage 53

Autometa, Release 2.0

hmmsearch.py

usage: hmmsearch.py

Filters domtblout generated from hmmsearch using provided cutoffs

optional arguments:
-h, --help show this help message and exit
--domtblout DOMTBLOUT

Path to domtblout generated from hmmsearch -domtblout
<domtblout> ... <hmmfile> <seqdb>

--cutoffs CUTOFFS Path to cutoffs corresponding to hmmfile used with
hmmsearch <hmmfile> <seqdb>

--seqdb SEQDB Path to orfs seqdb used as input to hmmsearch ...
<hmmfile> <seqdb>

--out OUT Path to write table of markers passing provided
cutoffs

hmmscan.py

usage: hmmscan.py

Retrieves markers with provided input assembly

positional arguments:
orfs </path/to/assembly.orfs.faa>
hmmdb </path/to/hmmpressed/hmmdb>
cutoffs </path/to/hmm/cutoffs.tsv>
hmmscan </path/to/hmmscan.tblout>
markers </path/to/markers.tsv>

optional arguments:
-h, --help show this help message and exit
--force force overwrite of out filepath
--cpus CPUS num cpus to use
--parallel enable hmmer multithreaded parallelization
--gnu-parallel enable GNU parallelization

bowtie.py

usage: bowtie.py

Align provided reads to metagenome `assembly` and write alignments to
`sam`.NOTE: At least one reads file is required.

positional arguments:
assembly </path/to/assembly.fasta>
database </path/to/alignment.database>. Will construct database

at provided path if not found.
(continues on next page)

54 Chapter 1. Guide

Autometa, Release 2.0

(continued from previous page)

sam </path/to/alignment.sam>

optional arguments:
-h, --help show this help message and exit
-1 [FWD_READS ...], --fwd-reads [FWD_READS ...]

</path/to/forward-reads.fastq>
-2 [REV_READS ...], --rev-reads [REV_READS ...]

</path/to/reverse-reads.fastq>
-U [SE_READS ...], --se-reads [SE_READS ...]

</path/to/single-end-reads.fastq>
--cpus CPUS Num processors to use.

prodigal.py

usage: prodigal.py

Calls ORFs with provided input assembly

optional arguments:
-h, --help show this help message and exit
--assembly filepath Path to metagenome assembly (default: None)
--output-nucls filepath

Path to output nucleotide ORFs (default: None)
--output-prots filepath

Path to output amino-acid ORFs (default: None)
--cpus int Number of processors to use. (If more than one this

will parallelize prodigal using GNU parallel)
(default: 1)

--force Overwrite existing output ORF filepaths (default:
False)

diamond.py

samtools.py

usage: samtools.py

Takes a sam file, sorts it and returns the output to a bam file

positional arguments:
sam </path/to/alignment.sam>
bam </path/to/output/alignment.bam>

optional arguments:
(continues on next page)

1.10. Usage 55

Autometa, Release 2.0

(continued from previous page)

-h, --help show this help message and exit
--cpus CPUS Number of processors to use

exceptions.py

coverage.py

usage: coverage.py

Construct contig coverage table given an input `assembly` and provided files.
Provided files may include one from the list below:
1. `fwd_reads` and/or `rev_reads` and/or `se_reads`
2. `sam` - alignment of `assembly` and `reads` in SAM format
3. `bam` - alignment of `assembly` and `reads` in BAM format
4. `bed` - alignment of `assembly` and `reads` in BED format

optional arguments:
-h, --help show this help message and exit
-f ASSEMBLY, --assembly ASSEMBLY

</path/to/metagenome.fasta>
-1 [FWD_READS ...], --fwd-reads [FWD_READS ...]

</path/to/forwards-reads.fastq>
-2 [REV_READS ...], --rev-reads [REV_READS ...]

</path/to/reverse-reads.fastq>
-U [SE_READS ...], --se-reads [SE_READS ...]

</path/to/single-end-reads.fastq>
--sam SAM </path/to/alignments.sam>
--bam BAM </path/to/alignments.bam>
--bed BED </path/to/alignments.bed>
--cpus CPUS Num processors to use. (default: 2)
--from-spades Extract k-mer coverages from contig IDs. (Input

assembly is output from SPAdes)
--out OUT Path to write a table of coverages

markers.py

usage: markers.py

Annotate ORFs with kingdom-specific marker information

optional arguments:
-h, --help show this help message and exit
--orfs ORFS Path to a fasta file containing amino acid sequences

of open reading frames (default: None)
--kingdom {bacteria,archaea}

(continues on next page)

56 Chapter 1. Guide

Autometa, Release 2.0

(continued from previous page)

kingdom to search for markers (default: bacteria)
--hmmscan HMMSCAN Path to hmmscan output table containing the respective

`kingdom` single-copy marker annotations. (default:
None)

--out OUT Path to write filtered annotated markers corresponding
to `kingdom`. (default: None)

--dbdir DBDIR Path to directory containing the single-copy marker
HMM databases. (default: MARKERS_DIR)

--hmmdb HMMDB Path to single-copy marker HMM databases. (default:
None)

--cutoffs CUTOFFS Path to single-copy marker cutoff tsv. (default: None)
--force Whether to overwrite existing provided annotations.

(default: False)
--parallel Whether to use hmmscan parallel option. (default:

False)
--gnu-parallel Whether to run hmmscan using GNU parallel. (default:

False)
--cpus CPUS Number of cores to use for parallel execution.

(default: 8)
--seed SEED Seed to set random state for hmmscan. (default: 42)

utilities.py

kmers.py

usage: kmers.py

Count k-mer frequencies of given `fasta`

optional arguments:
-h, --help show this help message and exit
--fasta filepath Metagenomic assembly fasta file (default: None)
--kmers filepath K-mers frequency tab-delimited table (will skip if

file exists) (default: None)
--size int k-mer size in bp (default: 5)
--norm-output filepath

Path to normalized kmers table (will skip if file
exists) (default: None)

--norm-method {ilr,clr,am_clr}
Normalization method to transform kmer counts prior to
PCA and embedding. ilr: isometric log-ratio transform
(scikit-bio implementation). clr: center log-ratio
transform (scikit-bio implementation). am_clr: center
log-ratio transform (Autometa implementation).
(default: am_clr)

--pca-dimensions int Number of dimensions to reduce to PCA feature space
after normalization and prior to embedding (NOTE:

(continues on next page)

1.10. Usage 57

Autometa, Release 2.0

(continued from previous page)

Setting to zero will skip PCA step) (default: 50)
--embedding-output filepath

Path to write embedded kmers table (will skip if file
exists) (default: None)

--embedding-method {sksne,bhsne,umap,densmap,trimap}
embedding method [sk,bh]sne are corresponding
implementations from scikit-learn and tsne,
respectively. (default: bhsne)

--embedding-dimensions int
Number of dimensions of which to reduce k-mer
frequencies (default: 2)

--force Whether to overwrite existing annotations (default:
False)

--cpus int num. processors to use. (default: 2)
--seed int Seed to set random state for dimension reduction

determinism. (default: 42)

metagenome.py

usage: metagenome.py

This script handles filtering by length and can calculate various metagenome
statistics.

optional arguments:
-h, --help show this help message and exit
--assembly filepath Path to metagenome assembly (nucleotide fasta).

(default: None)
--output-fasta filepath

Path to output length-filtered assembly fasta file.
(default: None)

--output-stats filepath
Path to output assembly stats table. (default: None)

--output-gc-content filepath
Path to output assembly contigs' GC content and
length. (default: None)

--cutoff int Cutoff to apply to length filter (default: 3000)
--force Overwrite existing files (default: False)
--verbose Log more information to terminal. (default: False)

1.10.2 binning

large_data_mode.py

usage: large_data_mode.py

Autometa Large-data-mode binning by contig set selection using max-partition-
size

(continues on next page)

58 Chapter 1. Guide

Autometa, Release 2.0

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--kmers filepath Path to k-mer counts table (default: None)
--coverages filepath Path to metagenome coverages table (default: None)
--gc-content filepath

Path to metagenome GC contents table (default: None)
--markers filepath Path to Autometa annotated markers table (default:

None)
--taxonomy filepath Path to Autometa assigned taxonomies table (default:

None)
--output-binning filepath

Path to write Autometa binning results (default: None)
--output-main filepath

Path to write Autometa main table used during/after
binning (default: None)

--clustering-method {dbscan,hdbscan}
Clustering algorithm to use for recursive binning.
(default: dbscan)

--completeness 0 < float <= 100
completeness cutoff to retain cluster. e.g. cluster
completeness >= `completeness` (default: 20.0)

--purity 0 < float <= 100
purity cutoff to retain cluster. e.g. cluster purity
>= `purity` (default: 95.0)

--cov-stddev-limit float
coverage standard deviation limit to retain cluster
e.g. cluster coverage standard deviation <= `cov-
stddev-limit` (default: 25.0)

--gc-stddev-limit float
GC content standard deviation limit to retain cluster
e.g. cluster GC content standard deviation <= `gc-
content-stddev-limit` (default: 5.0)

--norm-method {am_clr,ilr,clr}
kmer normalization method to use on kmer counts
(default: am_clr)

--pca-dims int PCA dimensions to reduce normalized kmer frequencies
prior to embedding (default: 50)

--embed-method {bhsne,umap,sksne,trimap}
kmer embedding method to use on normalized kmer
frequencies (default: bhsne)

--embed-dims int Embedding dimensions to reduce normalized kmers table
after PCA. (default: 2)

--max-partition-size int
Maximum number of contigs to consider for a recursive
binning batch. (default: 10000)

--starting-rank {superkingdom,phylum,class,order,family,genus,species}
Canonical rank at which to begin subsetting taxonomy
(default: superkingdom)

--reverse-ranks Reverse order at which to split taxonomy by canonical-
rank. When `--reverse-ranks` is given, contigs will be
split in order of species, genus, family, order,
class, phylum, superkingdom. (default: False)

(continues on next page)

1.10. Usage 59

Autometa, Release 2.0

(continued from previous page)

--cache dirpath Directory to store itermediate checkpoint files during
binning (If this is provided and the job fails, the
script will attempt to begin from the checkpoints in
this cache directory). (default: None)

--binning-checkpoints filepath
File path to store itermediate contig binning results
(The `--cache` argument is required for this feature).
If `--cache` is provided without this argument, a
binning checkpoints file will be created. (default:
None)

--rank-filter {superkingdom,phylum,class,order,family,genus,species}
Taxonomy column canonical rank to subset by provided
value of `--rank-name-filter` (default: superkingdom)

--rank-name-filter RANK_NAME_FILTER
Only retrieve contigs with this name corresponding to
`--rank-filter` column (default: bacteria)

--verbose log debug information (default: False)
--cpus int Number of cores to use by clustering method (default

will try to use as many as are available) (default:
-1)

utilities.py

summary.py

usage: summary.py

Summarize Autometa results writing genome fastas and their respective
taxonomies/assembly metrics for respective metagenomes

optional arguments:
-h, --help show this help message and exit
--binning-main filepath

Path to Autometa binning main table (output from
--binning-main argument) (default: None)

--markers filepath Path to annotated markers respective to domain
(bacteria or archaea) binned (default: None)

--metagenome filepath
Path to metagenome assembly (default: None)

--ncbi dirpath Path to user NCBI databases directory (Required for
retrieving metabin taxonomies) (default: None)

--binning-column str Binning column to use for grouping metabins (default:
cluster)

--output-stats filepath
Path to write metabins stats table (default: None)

--output-taxonomy filepath
Path to write metabins taxonomies table (default:

(continues on next page)

60 Chapter 1. Guide

Autometa, Release 2.0

(continued from previous page)

None)
--output-metabins dirpath

Path to output directory. (Directory must not exist.
This directory will be created.) (default: None)

recursive_dbscan.py

usage: recursive_dbscan.py

Perform marker gene guided binning of metagenome contigs using annotations
(when available) of sequence composition, coverage and homology.

optional arguments:
-h, --help show this help message and exit
--kmers filepath Path to embedded k-mers table (default: None)
--coverages filepath Path to metagenome coverages table (default: None)
--gc-content filepath

Path to metagenome GC contents table (default: None)
--markers filepath Path to Autometa annotated markers table (default:

None)
--output-binning filepath

Path to write Autometa binning results (default: None)
--output-main filepath

Path to write Autometa main table used during/after
binning (default: None)

--clustering-method {dbscan,hdbscan}
Clustering algorithm to use for recursive binning.
(default: dbscan)

--completeness 0 < float <= 100
completeness cutoff to retain cluster. e.g. cluster
completeness >= `completeness` (default: 20.0)

--purity 0 < float <= 100
purity cutoff to retain cluster. e.g. cluster purity
>= `purity` (default: 95.0)

--cov-stddev-limit float
coverage standard deviation limit to retain cluster
e.g. cluster coverage standard deviation <= `cov-
stddev-limit` (default: 25.0)

--gc-stddev-limit float
GC content standard deviation limit to retain cluster
e.g. cluster GC content standard deviation <= `gc-
content-stddev-limit` (default: 5.0)

--taxonomy filepath Path to Autometa assigned taxonomies table (default:
None)

--starting-rank {superkingdom,phylum,class,order,family,genus,species}
Canonical rank at which to begin subsetting taxonomy
(default: superkingdom)

--reverse-ranks Reverse order at which to split taxonomy by canonical-
rank. When `--reverse-ranks` is given, contigs will be
split in order of species, genus, family, order,

(continues on next page)

1.10. Usage 61

Autometa, Release 2.0

(continued from previous page)

class, phylum, superkingdom. (default: False)
--rank-filter {superkingdom,phylum,class,order,family,genus,species}

Taxonomy column canonical rank to subset by provided
value of `--rank-name-filter` (default: superkingdom)

--rank-name-filter RANK_NAME_FILTER
Only retrieve contigs with this name corresponding to
`--rank-filter` column (default: bacteria)

--verbose log debug information (default: False)
--cpus int Number of cores to use by clustering method (default

will try to use as many as are available) (default:
-1)

large_data_mode_loginfo.py

usage: large_data_mode_loginfo.py

Retrieve clustering time stats from autometa.binning.recursive_dbscan err log

optional arguments:
-h, --help show this help message and exit
--log LOG Path to binning log file (If using slurm, this is typically

stderr output path) (default: None)
--outdir OUTDIR Directory to write runtime information tables (default: .)
--prefix PREFIX Prefix to prepend to runtime information tables (Do not use

a directory path as a prefix) (default: None)
--overwrite Overwrite existing log info table if it already exists

(default: False)

unclustered_recruitment.py

usage: unclustered_recruitment.py

Recruit unclustered contigs given metagenome annotations and Autometa binning
results. Note: All tables must contain a 'contig' column to be used as the
unique table index

optional arguments:
-h, --help show this help message and exit
--kmers KMERS Path to normalized kmer frequencies table. (default:

None)
--coverage COVERAGE Path to coverage table. (default: None)
--binning BINNING Path to autometa binning output [will look for

col='cluster'] (default: None)
--markers MARKERS Path to domain-specific markers table. (default: None)
--output-binning OUTPUT_BINNING

Path to output unclustered recruitment table.
(default: None)

--output-main OUTPUT_MAIN
Path to write Autometa main table used during/after

(continues on next page)

62 Chapter 1. Guide

Autometa, Release 2.0

(continued from previous page)

unclustered recruitment. (default: None)
--output-features OUTPUT_FEATURES

Path to write Autometa features table used during
unclustered recruitment. (default: None)

--taxonomy TAXONOMY Path to taxonomy table. (default: None)
--taxa-dimensions TAXA_DIMENSIONS

Num of dimensions to reduce taxonomy encodings
(default: None)

--additional-features [ADDITIONAL_FEATURES ...]
Path to additional features with which to add to
classifier training data. (default: [])

--confidence CONFIDENCE
Percent confidence to allow classification (confidence
= num. consistent predictions/num. classifications)
(default: 1.0)

--num-classifications NUM_CLASSIFICATIONS
Num classifications for predicting/validating contig
cluster recruitment (default: 10)

--classifier {decision_tree,random_forest}
classifier to use for recruitment of contigs (default:
decision_tree)

--kmer-dimensions KMER_DIMENSIONS
Num of dimensions to reduce normalized k-mer
frequencies (default: 50)

--seed SEED Seed to use for RandomState when initializing
classifiers. (default: 42)

1.10.3 taxonomy

ncbi.py

majority_vote.py

usage: majority_vote.py

Script to assign taxonomy via a modified majority voting algorithm.

optional arguments:
-h, --help show this help message and exit
--lca LCA Path to LCA results table. (default: None)
--output OUTPUT Path to write voted taxid results table. (default: None)
--dbdir DBDIR Path to NCBI databases directory. (default: NCBI_DIR)
--orfs ORFS Path to ORFs fasta containing amino-acid sequences to be

annotated. (Only required for prodigal version < 2.6)
(default: None)

--verbose Add verbosity to logging stream. (default: False)

1.10. Usage 63

Autometa, Release 2.0

lca.py

usage: lca.py

Script to determine Lowest Common Ancestor

optional arguments:
-h, --help show this help message and exit
--blast filepath Path to BLAST results table respective to `orfs`.

(Note: The table provided must be in outfmt=6)
(default: None)

--dbdir dirpath Path to NCBI databases directory. (default: NCBI_DIR)
--lca-output filepath

Path to write LCA results. (default: None)
--sseqid2taxid-output filepath

Path to write qseqids sseqids to taxids translations
table (default: None)

--lca-error-taxids filepath
Path to write table of blast table qseqids that were
assigned root due to a missing taxid (default: None)

--verbose Add verbosity to logging stream. (default: False)
--force Force overwrite if results already exist. (default:

False)
--cache dirpath Path to cache pickled LCA database objects. (default:

None)
--only-prepare-cache Only prepare the LCA database objects and write to

provided --cache parameter (default: False)
--force-cache-overwrite

Force overwrite if results already exist. (default:
False)

vote.py

usage: vote.py

Filter metagenome by taxonomy.

optional arguments:
-h, --help show this help message and exit
--votes filepath Input path to voted taxids table. should contain (at

least) 'contig' and 'taxid' columns (default: None)
--assembly filepath Path to metagenome assembly (nucleotide fasta).

(default: None)
--output dirpath Directory to output fasta files of split canonical

ranks and taxonomy.tsv. (default: None)
--prefix str prefix to use for each file written e.g.

`prefix`.taxonomy.tsv. Note: Do not use a directory
prefix. (default: None)

--split-rank-and-write {superkingdom,phylum,class,order,family,genus,species}
If specified, will split contigs by provided
canonical-rank column then write to `output` directory

(continues on next page)

64 Chapter 1. Guide

Autometa, Release 2.0

(continued from previous page)

(default: None)
--ncbi dirpath Path to NCBI databases directory. (default: NCBI_DIR)

1.10.4 config

utilities.py

usage: utilities.py

Update Autometa configuration using provided arguments

optional arguments:
-h, --help show this help message and exit

Logging:
--print Print configuration without updating

Updating:
--section {environ,databases,ncbi,markers}

config section to update
--option OPTION option in `--section` to update
--value VALUE Value to update `--option`

environ.py

databases.py

usage: databases.py

Main script to configure Autometa database dependencies.

optional arguments:
-h, --help show this help message and exit
--config CONFIG </path/to/input/database.config> (default:

DEFAULT_FPATH)
--dryrun Log configuration actions but do not perform them.

(default: False)
--update-all Update all out-of-date databases. (default: False)
--update-markers Update out-of-date markers databases. (default: False)
--update-ncbi Update out-of-date ncbi databases. (default: False)
--check-dependencies Check database dependencies are satisfied. (default:

False)
--no-checksum Do not perform remote checksum comparisons to validate

databases are up-to-date. (default: False)
--nproc NPROC num. cpus to use for DB formatting. (default: 2)

(continues on next page)

1.10. Usage 65

Autometa, Release 2.0

(continued from previous page)

--out OUT </path/to/output/database.config> (default: None)

By default, with no arguments, will download/format databases into default
databases directory.

1.11 Contributing Guidelines

Autometa is an open-source project developed on GitHub. If you would like to help develop Autometa or have ideas
for new features please see our contributing guidelines

Some good first issues are available on the KwanLab Autometa GitHub repository good first issues

If you are wanting to help develop Autometa, you will need these additional dependencies:

1.11.1 Documentation

Autometa builds documentation using readthedocs. You have to install the following to be able to build the docs

Activate your autometa conda environment
conda activate autometa
Install dependencies
conda install -n autometa -c conda-forge \

sphinx sphinx_rtd_theme
List all make options
make
Build documentation for autometa.readthedocs.io
make docs

make docs

This command runs sphinx and generates autometa documentation for autometa.readthedocs.io.

1.11.2 Unit tests

You will have to install certain dependencies as well as test data to be able to run and develop unit tests.

Activate your autometa conda environment
conda activate autometa
List all make options
make
Install dependencies for test environment
make test_environment
Download test_data.json for unit testing to tests/data/
make unit_test_data_download

You can now run different unit tests using the following commands:

66 Chapter 1. Guide

https://github.com/KwanLab/Autometa/blob/dev/.github/CONTRIBUTING.md
https://github.com/KwanLab/Autometa/contribute
https://readthedocs.org/

Autometa, Release 2.0

Run all unit tests
make unit_test
Run unit tests marked with entrypoint
make unit_test_entrypoints
Run unit tests marked with WIP
make unit_test_wip

make test_environment

This command installs all the dependencies that you need to successfully run the unit tests.

make unit_test_data_download

This command downloads the test_data.json object that you need to run the Unit tests. This is a necessary step when
wanting to run unit tests as the test_data.json file will hold many of the variables necessary to conduct these tests.

make unit_test_data_build

This is used to create your own test_data.json object locally. This step is NOT required for running unit tests,
you can directly download the test_data.json object using the previous command. This command is needed in
case you are changing file formats or adding more objects into the test suite. To do this you first need to download
all the files from here in tests/data/ and then run make unit_test_data_build. This would generate a similar
test_data.json object that you get by running the previous command.

The above command is used to manually build the test_data.json file for unit testing. I.e. it will run the script
make_test_data.py which will aggregate all of the files in the tests/data folder that have been downloaded from here.
This is the first or perhaps 0th step when it comes to running the tests without an already generated test_data.json
object as it generates the test_data.json file that is parsed to retrieve all of the pre-generated variables used for interme-
diate stages of the pipeline. This is done to reduce the test time and computational workload when running through the
test suite.

make unit_test

This command runs all unit tests under the tests directory. This includes all tests marked as WIP or as entrypoints.
However this will skip tests marked with the following decorator:

@pytest.mark.skip
def test_some_function(...):

...

make unit_test_entrypoints

This command runs the tests marked as entrypoints. This is denoted in pytest with the decorator:

@pytest.mark.entrypoint
def test_some_function_that_is_an_entrypoint(...):
...

1.11. Contributing Guidelines 67

https://drive.google.com/open?id=189C6do0Xw-X813gspsafR9r8m-YfbhTS
https://drive.google.com/open?id=189C6do0Xw-X813gspsafR9r8m-YfbhTS

Autometa, Release 2.0

Entrypoints correspond to the entry point functions listed out by ‘console scripts’ in setup.py. These entry point func-
tions are aliased to provide more intuitive commands for the end user. These are important and sometimes referred to
as “happy” tests because if one of these fail for the end-user, they will probably be quite unhappy and likely distrust the
functionality of the rest of the codebase.

make unit_test_wip

This command runs the tests marked as work-in-progress (WIP). This is denoted in pytest with the decorator:

@pytest.mark.wip
def test_some_function_that_is_wip(...):
...

1.12 Autometa modules

1.12.1 autometa package

Subpackages

autometa.binning package

Submodules

autometa.binning.large_data_mode module

autometa.binning.large_data_mode_loginfo module

autometa.binning.recursive_dbscan module

autometa.binning.summary module

autometa.binning.unclustered_recruitment module

autometa.binning.utilities module

Module contents

autometa.common package

Subpackages

autometa.common.external package

Submodules

68 Chapter 1. Guide

Autometa, Release 2.0

autometa.common.external.bedtools module

autometa.common.external.bowtie module

License: GNU Affero General Public License v3 or later # A copy of GNU AGPL v3 should have been included in
this software package in LICENSE.txt. Script containing wrapper functions for bowtie2.

autometa.common.external.bowtie.align(db: str, sam: str, fwd_reads: Optional[List[str]] = None,
rev_reads: Optional[List[str]] = None, se_reads:
Optional[List[str]] = None, cpus: int = 0, **kwargs)→ str

Align reads to bowtie2-index db (at least one *_reads argument is required).

Parameters

• db (str) – </path/to/prefix/bowtie2/database>. I.e. db.{#}.bt2

• sam (str) – </path/to/out.sam>

• fwd_reads (list, optional) – [</path/to/forward_reads.fastq>, . . .]

• rev_reads (list, optional) – [</path/to/reverse_reads.fastq>, . . .]

• se_reads (list, optional) – [</path/to/single_end_reads.fastq>, . . .]

• cpus (int, optional) – Num. processors to use (the default is 0).

• **kwargs (dict, optional) – Additional optional args to supply to bowtie2. Must be in
format: key = flag value = flag-value

Returns </path/to/out.sam>

Return type str

Raises ChildProcessError – bowtie2 failed

autometa.common.external.bowtie.build(assembly: str, out: str)→ str
Build bowtie2 index.

Parameters

• assembly (str) – </path/to/assembly.fasta>

• out (str) – </path/to/output/database> Note: Indices written will resemble
</path/to/output/database.{#}.bt2>

Returns </path/to/output/database>

Return type str

Raises ChildProcessError – bowtie2-build failed

autometa.common.external.bowtie.main()

autometa.common.external.bowtie.run(cmd: str)→ bool
Run cmd via subprocess.

Parameters cmd (str) – Executable input str

Returns True if no returncode from subprocess.call else False

Return type bool

1.12. Autometa modules 69

Autometa, Release 2.0

autometa.common.external.diamond module

autometa.common.external.hmmscan module

autometa.common.external.hmmsearch module

autometa.common.external.prodigal module

autometa.common.external.samtools module

Script containing wrapper functions for samtools

autometa.common.external.samtools.main()

autometa.common.external.samtools.sort(sam, bam, cpus=2)
Views then sorts sam file by leftmost coordinates and outputs to bam.

Parameters

• sam (str) – </path/to/alignment.sam>

• bam (str) – </path/to/output/alignment.bam>

• cpus (int, optional) – Number of processors to be used. By default uses all the proces-
sors of the system

Raises

• TypeError – cpus must be an integer greater than zero

• FileNotFoundError – Specified path is incorrect or the file is empty

• ExternalToolError – Samtools did not run successfully, returns subprocess traceback and
command run

Module contents

Submodules

autometa.common.coverage module

autometa.common.exceptions module

License: GNU Affero General Public License v3 or later # A copy of GNU AGPL v3 should have been included in
this software package in LICENSE.txt.

File containing customized AutometaErrors for more specific exception handling

exception autometa.common.exceptions.AutometaError
Bases: Exception

Base class for Autometa Errors.

exception autometa.common.exceptions.BinningError
Bases: autometa.common.exceptions.AutometaError

BinningError exception class.

70 Chapter 1. Guide

Autometa, Release 2.0

Exception called when issues arise during or after the binning process.

This is usually a result of no clusters being recovered.

exception autometa.common.exceptions.ChecksumMismatchError
Bases: autometa.common.exceptions.AutometaError

ChecksumMismatchError exception class

Exception called when checksums do not match.

exception autometa.common.exceptions.DatabaseOutOfSyncError(value)
Bases: autometa.common.exceptions.AutometaError

Raised when NCBI databases nodes.dmp, names.dmp and merged.dmp are out of sync with each other :param
AutometaError: Base class for other exceptions :type AutometaError: class

__str__()
Operator overloading to return the text message written while raising the error, rather than the message of
__str__ by base exception :returns: Message written alongside raising the exception :rtype: str

exception autometa.common.exceptions.ExternalToolError(cmd, err)
Bases: autometa.common.exceptions.AutometaError

Raised when samtools sort is not executed properly.

Parameters AutometaError (class) – Base class for other exceptions

exception autometa.common.exceptions.TableFormatError
Bases: autometa.common.exceptions.AutometaError

TableFormatError exception class.

Exception called when Table format is incorrect.

This is usually a result of a table missing the ‘contig’ column as this is often used as the index.

autometa.common.kmers module

autometa.common.markers module

autometa.common.metagenome module

autometa.common.utilities module

Module contents

autometa.config package

Submodules

autometa.config.databases module

autometa.config.environ module

License: GNU Affero General Public License v3 or later # A copy of GNU AGPL v3 should have been included in
this software package in LICENSE.txt.

1.12. Autometa modules 71

Autometa, Release 2.0

Configuration handling for Autometa environment.

autometa.config.environ.bedtools()
Get bedtools version.

Returns version of bedtools

Return type str

autometa.config.environ.bowtie2()
Get bowtie2 version.

Returns version of bowtie2

Return type str

autometa.config.environ.configure(config: configparser.ConfigParser)→ Tuple[configparser.ConfigParser,
bool]

Checks executable dependencies necessary to run autometa. Will update config with executable dependencies
with details: 1. presence/absence of dependency and its location 2. versions

Parameters config (configparser.ConfigParser) – Description of parameter config.

Returns (config, satisfied) config updated with executables details Details: 1. location of executable
2. version of executable config : configparser.ConfigParser satisfied : bool

Return type 2-tuple

autometa.config.environ.diamond()
Get diamond version.

Returns version of diamond

Return type str

autometa.config.environ.find_executables()
Retrieves executable file paths by looking in Autometa dependent executables.

Returns {executable:</path/to/executable>, . . . }

Return type dict

autometa.config.environ.get_versions(program: Optional[str] = None)→ Union[Dict[str, str], str]
Retrieve versions from all required executable dependencies. If program is provided will only return version for
program.

See: https://stackoverflow.com/a/834451/12671809

Parameters program (str, optional) – the program to retrieve the version, by default None

Returns if program is None: dict - {program:version, . . . } if program: str - version

Return type dict or str

Raises

• ValueError – program is not a string

• KeyError – program is not an executable dependency.

autometa.config.environ.hmmpress()
Get hmmpress version.

Returns version of hmmpress

Return type str

72 Chapter 1. Guide

https://stackoverflow.com/a/834451/12671809

Autometa, Release 2.0

autometa.config.environ.hmmscan()
Get hmmscan version.

Returns version of hmmscan

Return type str

autometa.config.environ.hmmsearch()
Get hmmsearch version.

Returns version of hmmsearch

Return type str

autometa.config.environ.prodigal()
Get prodigal version.

Returns version of prodigal

Return type str

autometa.config.environ.samtools()
Get samtools version.

Returns version of samtools

Return type str

autometa.config.utilities module

autometa.config.utilities.get_config(fpath: str)→ configparser.ConfigParser
Load the config provided at fpath.

Parameters fpath (str) – </path/to/file.config>

Returns interpolated config object parsed from fpath.

Return type config.ConfigParser

Raises FileNotFoundError – Provided fpath does not exist.

autometa.config.utilities.main()

autometa.config.utilities.parse_args(fpath: Optional[str] = None)→ argparse.Namespace
Generate argparse namespace (args) from config file.

Parameters fpath (str) – </path/to/file.config> (default is DEFAULT_CONFIG in au-
tometa.config)

Returns namespace typical to parser.parse_args() method from argparse

Return type argparse.Namespace

Raises FileNotFoundError – provided fpath does not exist.

autometa.config.utilities.put_config(config: configparser.ConfigParser, out: str)→ None
Writes config to out and updates checkpoints checksum.

Parameters

• config (config.ConfigParser) – configuration containing user provided parameters and
files information.

• out (str) – </path/to/output/file.config>

Returns

1.12. Autometa modules 73

Autometa, Release 2.0

Return type NoneType

autometa.config.utilities.set_home_dir()→ str
Set the home_dir in autometa’s default configuration (default.config) based on autometa’s current location. If
the home_dir variable is already set, then this will be used as the home_dir location.

Returns </path/to/package/autometa>

Return type str

autometa.config.utilities.update_config(section: str, option: str, value: str, fpath: str =
'/home/docs/checkouts/readthedocs.org/user_builds/autometa/checkouts/2.0.3/autometa/config/default.config')
→ None

Update fpath in section for option with value.

Parameters

• fpath (str) – </path/to/file.config>

• section (str) – section header to update within fpath.

• option (str) – option to update within section.

• value (str) – value to update option.

Returns

Return type NoneType

Module contents

autometa.datasets package

Module contents

autometa.taxonomy package

Submodules

autometa.taxonomy.lca module

autometa.taxonomy.majority_vote module

autometa.taxonomy.ncbi module

autometa.taxonomy.vote module

Module contents

autometa.validation package

Submodules

autometa.validation.assess_metagenome_deconvolution module

74 Chapter 1. Guide

Autometa, Release 2.0

autometa.validation.benchmark module

autometa.validation.build_protein_marker_aln module

autometa.validation.calculate_f1_scores module

autometa.validation.cluster_process module

autometa.validation.cluster_process_docker module

autometa.validation.cluster_taxonomy module

autometa.validation.compile_reference_training_table module

autometa.validation.confidence_vs_accuracy module

autometa.validation.datasets module

autometa.validation.download_random_bacterial_genomes module

autometa.validation.length_vs_accuracy module

autometa.validation.make_simulated_metagenome module

autometa.validation.make_simulated_metagenome_control_fasta module

autometa.validation.reference_genome_from_quast module

autometa.validation.show_clusters module

autometa.validation.summarize_f1_stats module

autometa.validation.tabulate_bins module

autometa.validation.tabulate_metaquast_alignments module

autometa.validation.vizualize_assembly_graph_by_bin module

Module contents

Module contents

1.13 Legacy Autometa

To run Autometa version 1, you will need to download the latest Autometa version 1 release or navigate to the latest
Autometa version 1 commit on the GitHub repository.

1.13. Legacy Autometa 75

Autometa, Release 2.0

The latest Autometa version 1 release may be found here: https://github.com/KwanLab/Autometa/releases

You may find the commit associated with any of the Autometa releases by selecting the release and looking under the
release tag on the left.

1.14 License

GNU AFFERO GENERAL PUBLIC LICENSE Version 3, 19 November 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of works, specifically
designed to ensure cooperation with the community in the case of network server software.

The licenses for most software and other practical works are designed to take away your freedom to share and change
the works. By contrast, our General Public Licenses are intended to guarantee your freedom to share and change all
versions of a program–to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License which gives you legal permission to copy, distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate versions of the program, if
they receive widespread use, become available for other developers to incorporate. Many developers of free software
are heartened and encouraged by the resulting cooperation. However, in the case of software used on network servers,
this result may fail to come about. The GNU General Public License permits making a modified version and letting
the public access it on a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the modified source
code becomes available to the community. It requires the operator of a network server to provide the source code of
the modified version running there to the users of that server. Therefore, public use of a modified version, on a publicly
accessible server, gives the public access to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to accomplish similar
goals. This is a different license, not a version of the Affero GPL, but Affero has released a new version of the Affero
GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work
“based on” the earlier work.

76 Chapter 1. Guide

https://github.com/KwanLab/Autometa/releases
https://fsf.org/

Autometa, Release 2.0

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction
with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and promi-
nently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty
for the work (except to the extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body,
or, in the case of interfaces specified for a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in
the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to
enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those activities.
However, it does not include the work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the
Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided
the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program.
The output from running a covered work is covered by this License only if the output, given its content, constitutes a
covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modi-
fications exclusively for you, or provide you with facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not
allowed; section 10 makes it unnecessary.

1.14. License 77

Autometa, Release 2.0

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obli-
gations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the
extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you
disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection
for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and
all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program
has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions
of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey
the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accom-
panied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accom-
panied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support
for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source
for all the software in the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such

78 Chapter 1. Guide

Autometa, Release 2.0

an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a
network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that
it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.
In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, “normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered work in that User Product from a modified version of its
Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the
conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to
the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support
service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in
which it has been modified or installed. Access to a network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format
that is publicly documented (and with an implementation available to the public in source code form), and must require
no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more
of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were
included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to
part of the Program, that part may be used separately under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy,
or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you
modify the work.) You may place additional permissions on material, added by you to a covered work, for which you
have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by
the copyright holders of that material) supplement the terms of this License with terms:

1.14. License 79

Autometa, Release 2.0

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appro-
priate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be
marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or mod-
ified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If
the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with
a term that is a further restriction, you may remove that term. If a license document contains a further restriction but
permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement
of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt other-
wise to propagate or modify it is void, and will automatically terminate your rights under this License (including any
patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a
covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not
require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third
parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or sub-
dividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s

80 Chapter 1. Guide

Autometa, Release 2.0

predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License,
and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the
Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated,
not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement).
To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under the terms of this License, through a publicly available network
server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country,
or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country
that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring con-
veyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of,
or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a
discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from
those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from

1.14. License 81

Autometa, Release 2.0

those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your modified version must promi-
nently offer all users interacting with it remotely through a computer network (if your version supports such interaction)
an opportunity to receive the Corresponding Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary means of facilitating copying of software.
This Corresponding Source shall include the Corresponding Source for any work covered by version 3 of the GNU
General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with
a work licensed under version 3 of the GNU General Public License into a single combined work, and to convey the
resulting work. The terms of this License will continue to apply to the part which is the covered work, but the work
with which it is combined will remain governed by version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the
GNU Affero General Public License “or any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU Affero General Public License, you may choose any version
ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero General Public License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for
the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to
their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability

82 Chapter 1. Guide

Autometa, Release 2.0

in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where
the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero
General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see
<https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer network, you should also make sure that it provides
a way for users to get its source. For example, if your program is a web application, its interface could display a “Source”
link that leads users to an archive of the code. There are many ways you could offer source, and different solutions will
be better for different programs; see section 13 for the specific requirements.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer”
for the program, if necessary. For more information on this, and how to apply and follow the GNU AGPL, see <https:
//www.gnu.org/licenses/>.

1.15 Contact

If you like Autometa, visit our lab website to find out more about our research.
For suggestions, queries or appreciation feel free to contact Dr. Jason Kwan at jason.kwan@wisc.edu

1.16 Indices and tables

• genindex

• modindex

• search

1.15. Contact 83

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://kwanlab.github.io/
https://apps.pharmacy.wisc.edu/sopdir/jason_kwan/
mailto:jason.kwan@wisc.edu

Autometa, Release 2.0

84 Chapter 1. Guide

PYTHON MODULE INDEX

a
autometa, 75
autometa.binning, 68
autometa.common, 71
autometa.common.exceptions, 70
autometa.common.external, 70
autometa.common.external.bowtie, 69
autometa.common.external.samtools, 70
autometa.config, 74
autometa.config.environ, 71
autometa.config.utilities, 73
autometa.datasets, 74
autometa.taxonomy, 74
autometa.validation, 75

85

Autometa, Release 2.0

86 Python Module Index

INDEX

Symbols
__str__() (autometa.common.exceptions.DatabaseOutOfSyncError

method), 71

A
align() (in module autometa.common.external.bowtie),

69
autometa

module, 75
autometa.binning

module, 68
autometa.common

module, 71
autometa.common.exceptions

module, 70
autometa.common.external

module, 70
autometa.common.external.bowtie

module, 69
autometa.common.external.samtools

module, 70
autometa.config

module, 74
autometa.config.environ

module, 71
autometa.config.utilities

module, 73
autometa.datasets

module, 74
autometa.taxonomy

module, 74
autometa.validation

module, 75
AutometaError, 70

B
bedtools() (in module autometa.config.environ), 72
BinningError, 70
bowtie2() (in module autometa.config.environ), 72
build() (in module autometa.common.external.bowtie),

69

C
ChecksumMismatchError, 71
configure() (in module autometa.config.environ), 72

D
DatabaseOutOfSyncError, 71
diamond() (in module autometa.config.environ), 72

E
ExternalToolError, 71

F
find_executables() (in module au-

tometa.config.environ), 72

G
get_config() (in module autometa.config.utilities), 73
get_versions() (in module autometa.config.environ),

72

H
hmmpress() (in module autometa.config.environ), 72
hmmscan() (in module autometa.config.environ), 72
hmmsearch() (in module autometa.config.environ), 73

M
main() (in module autometa.common.external.bowtie),

69
main() (in module autometa.common.external.samtools),

70
main() (in module autometa.config.utilities), 73
module

autometa, 75
autometa.binning, 68
autometa.common, 71
autometa.common.exceptions, 70
autometa.common.external, 70
autometa.common.external.bowtie, 69
autometa.common.external.samtools, 70
autometa.config, 74
autometa.config.environ, 71

87

Autometa, Release 2.0

autometa.config.utilities, 73
autometa.datasets, 74
autometa.taxonomy, 74
autometa.validation, 75

P
parse_args() (in module autometa.config.utilities), 73
prodigal() (in module autometa.config.environ), 73
put_config() (in module autometa.config.utilities), 73

R
run() (in module autometa.common.external.bowtie), 69

S
samtools() (in module autometa.config.environ), 73
set_home_dir() (in module autometa.config.utilities),

74
sort() (in module autometa.common.external.samtools),

70

T
TableFormatError, 71

U
update_config() (in module autometa.config.utilities),

74

88 Index

	Guide
	Getting Started
	Choose a workflow

	🍏 Nextflow Workflow 🍏
	Why nextflow?
	System Requirements
	Data Preparation
	Metagenome Assembly
	Preparing a Sample Sheet
	Supported Assemblers for cov_from_assembly
	Example sample_sheet.csv

	Quick Start
	Installation
	Configuring a scheduler
	Running Autometa
	Choose a version
	Choose nf-core interface
	General nextflow parameters
	Input and Output
	Binning parameters
	Additional Autometa options
	Computational parameters
	Do you want to run the nextflow command now?

	Basic
	Installing Nextflow and nf-core tools with Conda
	Using nf-core
	Setting parameters with a web-based GUI
	Required parameters
	Running the pipeline

	Advanced
	Parallel computing and computer resource allotment
	Databases
	CPUs, Memory, Disk
	Additional Autometa parameters
	Customizing Autometa’s Scripts
	Useful options
	Resuming the workflow
	Execution Report
	Visualizing the Workflow

	Configuring your process executor
	SLURM

	Docker image selection

	🐚 Bash Workflow 🐚
	Getting Started
	Compute Environment Setup
	Download Workflow Template
	via curl
	via wget

	Configure Required Inputs

	Data preparation
	Metagenome Assembly
	Alignments Preparation
	ORFs
	Diamond blastp Preparation
	NCBI Preparation
	Input Sample Name
	Output directory

	Running the pipeline
	Additional parameters

	📓 Step by Step Tutorial 📓
	1. Length filter
	2. Coverage calculation
	from SPAdes
	from alignments.bed
	from alignments.bam
	from alignments.sam
	from paired-end reads

	3. Generate Open Reading Frames (ORFs)
	4. Single copy markers
	5. Taxonomy assignment
	5.1 BLASTP
	5.2 Lowest Common Ancestor (LCA)
	5.3 Majority vote
	5.4 Split kingdoms

	6. K-mer counting
	Advanced Usage

	7. Binning
	Advanced Usage

	8. Unclustered recruitment (Optional)
	Advanced Usage

	Databases
	Markers
	NCBI

	Examining Results
	Automappa
	Visualize bins

	Benchmarking
	Benchmarking with the autometa-benchmark module
	Taxon-profiling
	Example benchmarking with simulated communities

	Clustering
	Example benchmarking with simulated communities

	Binning
	Example benchmarking with simulated communities

	Autometa Test Datasets
	Descriptions
	Simulated Communities
	Synthetic Communities

	Download
	Using autometa-download-dataset
	Using gdrive
	Example for the 78Mbp simulated community

	Advanced
	Data Handling
	Aggregating benchmarking results
	When dataset index is unique
	When dataset index is not unique

	Downloading multiple test datasets at once
	Generating new simulated communities

	Installation
	Direct installation (Quickest)
	Install from source (using make)
	Install from source (full commands)
	Building the Docker image
	Testing Autometa

	Autometa Python API
	Running modules
	Using Autometa’s Python API
	Examples
	Samtools wrapper
	Metagenome Description
	k-mer frequency counting, normalization, embedding

	Usage
	common
	external
	bedtools.py
	hmmsearch.py
	hmmscan.py
	bowtie.py
	prodigal.py
	diamond.py
	samtools.py

	exceptions.py
	coverage.py
	markers.py
	utilities.py
	kmers.py
	metagenome.py

	binning
	large_data_mode.py
	utilities.py
	summary.py
	recursive_dbscan.py
	large_data_mode_loginfo.py
	unclustered_recruitment.py

	taxonomy
	ncbi.py
	majority_vote.py
	lca.py
	vote.py

	config
	utilities.py
	environ.py
	databases.py

	Contributing Guidelines
	Documentation
	make docs

	Unit tests
	make test_environment
	make unit_test_data_download
	make unit_test_data_build
	make unit_test
	make unit_test_entrypoints
	make unit_test_wip

	Autometa modules
	autometa package
	Subpackages
	autometa.binning package
	Submodules
	autometa.binning.large_data_mode module
	autometa.binning.large_data_mode_loginfo module
	autometa.binning.recursive_dbscan module
	autometa.binning.summary module
	autometa.binning.unclustered_recruitment module
	autometa.binning.utilities module
	Module contents

	autometa.common package
	Subpackages
	autometa.common.external package
	Submodules
	autometa.common.external.bedtools module
	autometa.common.external.bowtie module
	autometa.common.external.diamond module
	autometa.common.external.hmmscan module
	autometa.common.external.hmmsearch module
	autometa.common.external.prodigal module
	autometa.common.external.samtools module
	Module contents
	Submodules
	autometa.common.coverage module
	autometa.common.exceptions module
	autometa.common.kmers module
	autometa.common.markers module
	autometa.common.metagenome module
	autometa.common.utilities module
	Module contents

	autometa.config package
	Submodules
	autometa.config.databases module
	autometa.config.environ module
	autometa.config.utilities module
	Module contents

	autometa.datasets package
	Module contents

	autometa.taxonomy package
	Submodules
	autometa.taxonomy.lca module
	autometa.taxonomy.majority_vote module
	autometa.taxonomy.ncbi module
	autometa.taxonomy.vote module
	Module contents

	autometa.validation package
	Submodules
	autometa.validation.assess_metagenome_deconvolution module
	autometa.validation.benchmark module
	autometa.validation.build_protein_marker_aln module
	autometa.validation.calculate_f1_scores module
	autometa.validation.cluster_process module
	autometa.validation.cluster_process_docker module
	autometa.validation.cluster_taxonomy module
	autometa.validation.compile_reference_training_table module
	autometa.validation.confidence_vs_accuracy module
	autometa.validation.datasets module
	autometa.validation.download_random_bacterial_genomes module
	autometa.validation.length_vs_accuracy module
	autometa.validation.make_simulated_metagenome module
	autometa.validation.make_simulated_metagenome_control_fasta module
	autometa.validation.reference_genome_from_quast module
	autometa.validation.show_clusters module
	autometa.validation.summarize_f1_stats module
	autometa.validation.tabulate_bins module
	autometa.validation.tabulate_metaquast_alignments module
	autometa.validation.vizualize_assembly_graph_by_bin module
	Module contents

	Module contents

	Legacy Autometa
	License
	Contact
	Indices and tables

	Python Module Index
	Index

